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ABSTRACT

SPATIAL DISTRIBUTIONS: DENSITY-EQUALIZING MAP

PROJECTIONS, FACILITY LOCATION, AND TWO-DIMENSIONAL

NETWORKS

by

Michael T. Gastner

Chairperson: Mark E. Newman

Geography is a strong force behind data of statistical, economical and technological

interest. The distribution of human population and the location of industries, for

example, follow non-trivial geographic patterns. Service facilities such as department

stores and hospitals are constrained by geography since they must be in geographic

proximity to consumers and patients. And in transportation networks, geography is

important since nearby places can be more easily connected than those far apart.

We use tools from statistical physics to analyze the influence of geography on

several social and technological phenomena. Variations in population density often go

a long way in explaining geographic data. This can be visualized with “cartograms,”

maps in which the sizes of geographic regions such as countries or provinces appear

in proportion to their population. The challenge in creating cartograms is to scale

regions and still have them fit together. Here we present a new technique based on

linear diffusion that is conceptually simple and produces useful and easily readable

maps. A number of applications, including the results of the 2004 US presidential



election, illustrate the technique.

Many geographic problems of practical interest involve the optimization of point

locations. Here we treat in detail a problem related to the distribution of service

facilities, the p-median problem. It consists of finding the positions of p facilities in

geographic space such that the mean distance between a member of the population

and the nearest facility is minimal. An algorithm for approximate numerical solutions

and analytical results are presented.

The remainder of this dissertation concentrates on networks whose vertices have

definite geographic positions. This includes transportation systems, utility networks,

or the Internet. We focus on the cost of a network, as represented by the total length of

all its links, and its efficiency in terms of the directness of routes from point to point.

Although minimizing the cost and maximizing the efficiency are often conflicting

goals, real distribution networks achieve remarkably good compromises. Models and

numerical simulations are presented to explain this observation. We close with an

analysis of structure and flow in optimally designed spatial networks.
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CHAPTER I

INTRODUCTION

In the past few years, the scientific community has realized the relevance of sta-

tistical physics for many disciplines outside of physics. Exciting new results have

emerged by applying concepts and methods of statistical physics to fields as different

as evolutionary biology, economics, and sociology. In this dissertation, we hope to

contribute to this young field of interdisciplinary work by exploring several topics

linking statistical physics with geography.

We are by no means the first to draw parallels between both sciences. In fact,

physics metaphors were common practice during the quantitative geography move-

ment of the 1960s and early 1970s. One of the central works of that period, Bunge’s

“Theoretical geography” [14], has many references to physics. He describes a gravity

theory of human settlement, an electric circuit theory of movement in transportation

networks, a heat flow model of human migration, a fluid mechanics analogy for traffic

flows, and a kinetic gas theory for the geographic spread of ideas. Beyond Bunge’s

direct comparisons to physics however, this general zeitgeist of the geographic liter-

ature of those days was characterized by a tendency towards abstraction, modeling,

and mathematics—a typical approach for a physicist, but rather rare in the overall

history of geography.

Imposing a physics attitude on other disciplines is not without its risks. “The

most distinguishing feature of the physicists’ character ... is the idea that everything

that can be analysed quantitatively should be modelled (and if it cannot be analysed

1



it should be modelled anyway)” [15]. The quantitative geography community some-

times stepped into this same pitfall of producing “hot air” by making mathematical

reasoning an end in itself. Some leading scholars, therefore, started rejecting quan-

titative geography in the 1970s: “The quantitative revolution has run its course and

diminishing marginal returns are apparently setting in as ... [it] serve[s] to tell us less

and less about anything of great relevance. ... There is a clear disparity between the

sophisticated theoretical and methodological framework which we are using and our

ability to say anything really meaningful about events as they unfold around us” [16].

This led not only to the decline of the quantitative movement, but also to a serious

identity crisis in the geography community. The University of Michigan’s geography

department for example, once a hot spot of that movement, was disbanded in 1982,

following a similar trend at other universities. On the positive side, this brief period

established the idea that social geography can go beyond previous, mostly qualitative

and case-based studies. The recent surge of complex systems research, triggered

by the ability to perform large-scale numerical simulations has, mostly unwittingly,

taken up the torch with its work on land use patterns [17]. In our opinion, much can

still be gained by returning to some of the questions posed by the earlier pioneers of

quantitative geography.

In Chapter II we will take a closer look at what might be considered the paradig-

matic problem of that era [18], the construction of “cartograms”, i.e. maps in which

the sizes of geographic regions such as countries or provinces appear in proportion to

their population. Such maps are helpful for the representation of census results, elec-

tion returns, disease incidence, and many other kinds of human data. Unfortunately,

in order to scale regions and still have them fit together, one is normally forced to

distort the regions’ shapes, potentially resulting in maps that are difficult to read.

Here we will introduce a technique for making cartograms based on ideas borrowed

from elementary physics that is conceptually simple and produces easily readable

2



maps. We will illustrate this method with applications to disease and homicide cases,

Autonomous Systems in the Internet, the 2004 US presidential election, energy con-

sumption and production in the United States, and the geographic distribution of

stories appearing in the news.

While most data in Chapter II are of a probabilistic nature, Chapter III will

concentrate on data obtained by optimization. The particular problem we will study

there is related to the distribution of service facilities such as hospitals or post offices.

We will try to find the positions of p facilities in geographic space such that the

mean distance between a member of the population and the facility closest to him or

her is minimal. Solving this so-called p-median problem is very difficult; no efficient

method is currently known that can solve it exactly. We will present an approximate

numerical algorithm as well as approximate analytical calculations, and will show

how these results relate to the spatial distribution of real facilities.

We will then move on to facilities which are not simply isolated points in space,

but have connections to other facilities in the form of a network. Chapter IV will

consider the case of a growing distribution or collection network with one “root node,”

a facility that acts as a source or sink of the commodity distributed. Examples include

pipelines delivering oil from a well to neighboring towns, or urban transit networks

transporting passengers to a central train station. In particular, we will focus on the

cost of a network, as represented by the total length of all its connections, and its

efficiency in terms of the directness of routes from point to point. Using data from

several real-world examples, we will find that distribution networks appear remarkably

close to optimal where both these properties are concerned. We will propose two

models of network growth that offer explanations of how this situation might arise.

Similarities with fractal growth models in the physics literature will be discussed.

Not all networks, however, have a single source or sink. In Chapter V we will

investigate the case where many facilities contribute to the flow. Similar to Chap. IV,
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the efficiency of such networks depends on their total length as well as the minimal

distances between all facilities. These two criteria are generally at odds with one

another: A network with few and short connections will not provide many direct links

from point to point, while a network with all possible links is usually prohibitively

expensive to construct. Finding an optimal solution is difficult, so we will introduce

a heuristic Monte Carlo optimization scheme. We will analyze near-optimal networks

for different user preferences and distance metrics in terms of their efficiency and flow

distribution. With our algorithm to solve the p-median problem from Chap. III, we

can create optimized networks for realistic population distributions, a technique with

potential use in real-life network design problems.

A brief summary of our results in Chapter VI will conclude this dissertation.
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CHAPTER II

DENSITY-EQUALIZING MAP PROJECTIONS:

DIFFUSION-BASED ALGORITHM AND

APPLICATIONS

2.1 Introduction

Suppose we wish to represent on a map some data concerning, to take the most

common example, the human population. For instance, we might wish to show votes

in an election, incidence of a disease, number of cars, televisions, or phones in use,

numbers of people falling in one group or another of the population, by age or income,

or any other variable of statistical, medical, or demographic interest. The typical

course under such circumstances would be to choose one of the standard (near-)equal-

area projections for the region of interest and plot the data on it either as individual

data points or using some sort of color code. The interpretation of such maps however

can be problematic. A plot of disease cases, for instance, will inevitably show high

incidence in cities and low incidence in rural areas, solely because there is a higher

density of people living in cities. Fig. 2.1(a), for example, shows the distribution of

lung cancer cases among males in the state of New York between 1993 and 1997.

Cases are particularly dense in New York City and its suburbs and sparse in the rural

north of the state, but this could be purely a population effect and nothing to do

with the disease itself.

To get a clearer impression of the situation we can instead plot a fractional measure

of disease incidence rather than raw incidence data; we plot some measure of the
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Figure 2.1: Lung cancer cases among males in the state of New York, 1993-1997. (a) Each
dot represents 10 cases, randomly placed within the zip-code area of occurrence. Since there
are 1598 zip codes in the state, each case can be located quite accurately. (Data from the
New York State Department of Health.) (b) Incidence rates by county.

number of cases per capita, binned in segments small enough to give good spatial

resolution but large enough to give reliable sampling. Then we can use a color code

to indicate different per capita rates on the map, as in Fig. 2.1(b). This procedure

however has its own problems since it discards all information about where most of

the cases are occurring. In Fig. 2.1(b), for example, there is now no way to tell that

a large fraction of all cases occur in the New York City area.

Ideally, we would like some geographic representation of the data that allows us

to see simultaneously where each individual case occurs as well as the per capita

incidence. Though it appears at first that these two goals are irreconcilable, this is

not in fact the case. On a normal area-preserving or approximately area-preserving

projection, such as that used in Fig. (2.1), they are indeed irreconcilable. But if we

can construct a projection in which areas on the map are proportional not to areas

on the ground but instead to human population, then we can have our cake and eat

it. Disease cases or other similar data plotted on such a projection will have the

same density in areas with equal per capita incidence regardless of the population,

since both the raw numbers of cases and the area will scale with the population.
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However, each case or group of cases can still be represented individually on such a

map, so it will be clearly visible where most of the cases occur. Projections of this

kind are known as value-by-area maps, density equalizing maps, anamorphoses, or

cartograms [19, 3, 20, 21].

The construction of cartograms turns out to be a challenging undertaking. A

variety of methods have been put forward, but none of them have been entirely satis-

factory. In particular, they often produce highly distorted maps that are difficult to

read or projections that are badly behaved under some circumstances, with overlap-

ping regions or strong dependence on coordinate axes. In many cases the methods

proposed are also computationally demanding, sometimes taking hours to produce

a single map. Here we describe a new method based on the physics of diffusion

which is, we believe, intuitive, while also producing elegant, well-behaved, and useful

cartograms whose calculation makes relatively low demands on our computational

resources.

2.2 Literature review

Cartograms have been used by geographers for about one century. Early examples,

like that in Fig. 2.2, had to be prepared laboriously by hand for each individual map.

Several methods have been proposed since then that can be implemented as computer

programs. Before deciding for any particular technique, the user should clearly define

his objective. If, for example, one is willing to live with a non-contiguous cartogram,

one in which regions adjacent in real life are not adjacent on the cartogram, then sev-

eral quite simple methods give good results, such as Dorling’s circular cartograms [3]

(Fig. 2.3). If, on the other hand, the rescaled regions are supposed to fit together

correctly, one is forced to use more involved strategies.

Some of these strategies begin by breaking down the map into a finite set of non-

intersecting polygons and vertices which describe the boundaries of interest. Then
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Figure 2.2: Rectangular cartogram by Raisz (1934) [2]. States appear in proportion to
their population in 1930. Note that some states adjacent in reality are not adjacent on this
cartogram and vice versa.

the vertices are moved to new positions such that the polygon areas are proportional

to the population inside them, but the original topology is left intact, i.e. polygons

that were neighbors on the original map remain neighbors on the cartogram. This

can, of course, only be accomplished by distorting the polygon’s shapes. To keep the

shapes more or less similar to the original ones, certain features of the polygons, such

as angles or length ratios, should be preserved.

Kocmoud [4] proposed a mass-and-spring model in which some of the springs

attempt to change the areas, while other springs try to preserve the shapes. The

springs, however, do not follow the equations of motion for simple harmonic oscillators

because then the cartogram would not settle down in a stationary state, but oscillate

about the equilibrium position. To prevent this, Kocmoud changes the equations of

motion so that they contain only first, but not second derivatives with respect to

time.1 The computation then repeatedly alternates between changing the polygon

1The differential equation at the center of our method below, Eq. (2.7), is similarly first-order in

8



Figure 2.3: Map and circular population cartogram of Great Britain. Reproduced with the
author’s permission from [3].

areas and restoring their shapes. To reduce the complexity of the problem, the

polygons are initially simplified to contain fewer vertices; the missing vertices are

inserted again only at later stages of the calculation to form the final cartogram. The

results are easily readable cartograms (Fig. 2.4(a)), but this method appears to be

rather slow: Kocmoud reports a run-time of 16 hours.

Keim et al. [5] achieve considerably shorter run-times, 25 seconds, with a similar

vertex relocation technique. Their “CartoDraw” algorithm is faster because it divides

the input map into small sections, and only vertices within one section are moved

during one iteration whereas Kocmoud’s method considers all vertices simultaneously.

Some of the speed-up, however, seems to be due to a substantial simplification of

the input polygons before beginning the computations which unfortunately dispenses

with many useful cartographic details. The missing vertices are not, as in Kocmoud’s

scheme, put back later during the calculation which gives the “CartoDraw” results a

time.
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Figure 2.4: US population cartogram, (a) by Kocmoud [4], (b) by Keim et al. [5] ( c©2004
IEEE).

Figure 2.5: Population cartogram of Britain by county. Left: the original map. Right:
cartogram generated using the cellular automaton algorithm of Dorling. Reproduced with
the author’s permission from Dorling [3].

less polished appearance (Fig. 2.4(b)).

Not all methods operate directly on the polygon vertices. Appel et al. [22] and

recently Dorling [3] have both proposed methods based on cellular automata that

draw the initial map on a fine grid. In their algorithms, for each iteration, cells lying

on or close to the boundaries of regions are identified, and if a neighboring region needs

extra area, then those cells are reassigned to the neighbor. The procedure is repeated

and the regions with greatest population grow slowly larger until an equilibrium is

reached and no further changes are needed. The procedure is elegant and simple, but

in practice it can distort shapes quite badly—see Fig. 2.5. One can add constraints
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on the shapes to make the maps more readable, but then the method quickly loses

its main advantage, namely its simplicity.

The techniques we have reviewed so far only determine the boundaries, but not the

positions of any other points on the map. Other techniques construct a continuous

“displacement field” which gives the displacements needed for every point on the

map to form a density equalizing projection. Mathematically, the displacements form

a transformation r → T(r) of one plane to another plane such that the Jacobian

∂(Tx, Ty)/∂(x, y) of the transformation is proportional to some specified population

density ρ(r) thus:

∂(Tx, Ty)

∂(x, y)
≡ ∂Tx

∂x

∂Ty

∂y
− ∂Tx

∂y

∂Ty

∂x
=

ρ(r)

ρ̄
. (2.1)

where ρ̄ is the mean population density averaged over the area to be mapped. (This

choice of normalization for the Jacobian ensures that the total area before and after

the transformation is the same.)

Eq. (2.1) does not determine the cartogram projection uniquely. To do that we

need one more constraint; two constraints are needed to fix the projection for a

two-dimensional cartogram. Different choices of the second constraint give different

projections, and no single choice appears to be the obvious candidate. One idea is

to demand conformal invariance under the cartogram transformation, i.e., to demand

that angles be preserved locally. This requirement is equivalent to demanding that

the Cauchy–Riemann equations be satisfied:

∂Tx

∂x
=

∂Ty

∂y
,

∂Tx

∂y
= −∂Ty

∂x
, (2.2)

but this imposes two, not one, additional constraints, and hence it is normally not

possible to construct a conformally invariant cartogram.

In an attempt to minimize the distortion of angles, Tobler [18, 6] took the first

steps in the automated computer generation of cartograms in the late 1960s (Fig. 2.6(a)).
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Figure 2.6: US Population cartograms (a) by Tobler [6] ( c©1973 New York Academy of
Sciences, U.S.A.), (b) by Dougenik et al.(reproduced with permission from [7]), (c) by
Gusein-Zade and Tikunov [8] (reproduced with permission from [8]).

The initial map is divided into small rectangular or hexagonal cells, each of which

is then independently dilated or shrunk to a size proportional to its population con-

tent. Since each cell is scaled separately, the corners of adjacent cells do not match

afterwards. To re-establish a match, Tobler’s method takes a vector average over

the positions of corresponding corners and draws a new map with the resulting dis-

torted cells. The process is then iterated until a fixed point of the transformation

is reached. Although the principle is simple, it runs into practical problems. First,

convergence tends to be rather slow because a node a few cells away from a popu-

lation center will feel the effect of that center only after several iterations. Second,

under some circumstances the transformation can produce overlapping or “folded”

regions of the map, thereby ruining the topology. This problem can be corrected by

introducing additional constraints, but the result is a more complex algorithm with

slower run-times.

To increase the speed of the calculations, Dougenik et al. [7] introduced an algo-

rithm where the borders of a cell move in response not only to local space requirements

but also to “forces” exerted by other cells. Cells create force fields that diminish with

distance from the cell and that are larger for cells that contain larger populations.

These forces “push” other cells away from areas of high population in a manner rem-

iniscent of the behavior of charged objects in electrostatics (although the authors do

not use this metaphor). Again the positions are relaxed iteratively to achieve the final
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cartogram, and convergence is substantially faster than Tobler’s algorithm, although

topological errors still cannot be ruled out.

Gusein-Zade and Tikunov [8] suggested a further twist that does away with the

cells altogether by taking the limit of infinitely small cell size. The displacements

can then be expressed as integrals over the mapped area such that regions with high

population densities exert a repulsive force and those with lower densities an attractive

force:

T(r)− r =

∫

map

ρ(r′)− ρ̄

ρ̄

r− r′

2π(r− r′)2
d2r′. (2.3)

This integral is akin to Coulomb’s law in two dimensions and we can apply the usual

tools of vector analysis to it. In particular, if the density ρ(r) is a piecewise constant

function, Stokes theorem allows us to rewrite the expression above as a sum of line

integrals that can be analytically solved. The method, though somewhat arcane,

produces some of the most attractive cartograms among the existing algorithms—see

Fig. 2.6(c).

Several other mathematical techniques have been proposed [23, 24, 25, 26] as well

as some experimental methods, using mechanical or electrostatic devices [27, 28, 29].

The method we will describe in the next section, although also based on physics, has

the advantage that it can be easily and quickly simulated on a computer.

2.3 The diffusion cartogram

It is a trivial observation that on a true population cartogram the population is

necessarily uniform: once the areas of regions have been scaled to be proportional

to their population then, by definition, population density is the same everywhere.

Thus, one way to create a cartogram given a particular population density is to

allow population somehow to “flow away” from high-density areas into low-density

ones until the density is equalized everywhere. This immediately brings to mind the

diffusion process of elementary physics, and in fact it is not difficult to show that
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simple Fickian (or linear) diffusion achieves just such a density equalization. This is

the basis for our method of constructing a cartogram.

We describe the population by a density function ρ(r, t), where r represents geo-

graphic position and t time. At t = 0 the population density is the one observed in

reality, and then we allow this density to diffuse. The current density, measuring the

amount and direction of flow, is given by

J = v(r, t) ρ(r, t), (2.4)

where v(r, t) and ρ(r, t) are the velocity and density respectively at position r and

time t. In Fickian diffusion the current density follows the gradient of the density

field thus:

J = −∇ρ, (2.5)

meaning that the flow is always directed from regions of high density to regions of

low density and will be faster when the gradient is steeper. Conventionally, there is a

diffusion constant in Equation (2.5) that sets the time scale of the diffusion process.

But since we are only interested in the limit t→∞ we can set this diffusion constant

equal to one without loss of generality.

The diffusing population is conserved locally so that

∇ · J +
∂ρ

∂t
= 0. (2.6)

Combining Eqs. (2.4), (2.5), and (2.6) we then arrive at the familiar diffusion equation:

∇2ρ− ∂ρ

∂t
= 0 (2.7)

and the expression for the velocity field in terms of the population density:

v(r, t) = −∇ρ

ρ
. (2.8)

The calculation of the cartogram involves solving Eq. (2.7) for ρ(r, t) starting from
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the initial condition in which ρ is equal to the given population density of the region

of interest and then calculating the corresponding velocity field from Eq. (2.8). The

cumulative displacement r(t) of any point on the map at time t can be calculated by

integrating the velocity field thus:

r(t) = r(0) +

∫ t

0

v(r, t′) dt′. (2.9)

In the limit t → ∞ the set of such displacements for all points on the original map

defines the cartogram.

Most of the time, we are not interested in mapping the entire globe, but only some

part of it, which means that the area of interest will have boundaries (e.g., country

borders or coastlines) beyond which we don’t know or don’t care about the population

density. It would be inappropriate to represent the regions outside these boundaries

as having zero population, even if they are, like the ocean, unpopulated, since this

would cause arbitrary expansion of the cartogram as the population diffused into its

uninhabited surroundings. (This is true of essentially all methods for constructing

cartograms.) Instead, therefore, we apply a “neutral buoyancy” condition, floating

the area of interest in a “sea” of uniform population density equal to the mean density

of the map as a whole. This keeps the total area under consideration constant during

the diffusion process.

The whole system, including the sea, is then enclosed in a box.2 For simplicity

we consider only rectangular boxes, as most others have done also.3 Provided the

dimensions Lx and Ly of the box are substantially larger than the area to be mapped,

2Note that we do not fix the shape of the borders or coastlines in our cartogram, as others have
occasionally done. Doing so can create bottlenecks in the diffusion flow, which we avoid by allowing
free motion of all points, whether they are near a border or not. Fixing external boundaries in
fact often produces worse cartograms because it requires more substantial distortions of internal
boundaries.

3We discuss spherical cartograms briefly in Section 7.
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the dimensions themselves do not matter. In the limit Lx, Ly → ∞ the cartogram

will be a unique deterministic mapping, independent of the coordinate system used,

with no overlapping regions. In practice, we find that quite moderate system sizes are

adequate—dimensions two to three times the linear extent of the area to be mapped

appear to give good results. We also need to choose boundary conditions on the walls

of the box. This choice too has no great effect on the results, provided the size of the

box is reasonably generous. We use Neumann boundary conditions in which there is

no flow of population through the walls of the box.

The considerations above completely specify our method and are intuitive and

straightforward. The actual implementation of the method, if one wants a calculation

that runs quickly, involves more work. We solve the diffusion equation in Fourier

space, where it is diagonal, and back-transform before integrating over the velocity

field. With the Neumann boundary conditions, the appropriate Fourier basis is the

cosine basis, in which the solution to the diffusion equation has the form

ρ(r, t) =
4

LxLy

∑

k

ρ̃(k) cos(kxx) cos(kyy) exp(−k2t), (2.10)

where the sum is over all wave vectors k = (kx, ky) = 2π(m/Lx, n/Ly) with m, n

non-negative integers, and ρ̃(k) is the discrete cosine transform of ρ(r, t = 0):

ρ̃(k) =
1

4
(δkx,0 + 1)

(

δky,0 + 1
)

∫ Lx

0

∫ Ly

0

ρ(r, 0) cos(kxx) cos(kyy) dx dy, (2.11)

where δi,j is the Kronecker symbol. The velocity field v is then easily calculated from

Eqs. (2.8) and (2.10) and has components

vx(r, t) =

∑

k
kxρ̃(k) sin(kxx) cos(kyy) exp(−k2t)

∑

k
ρ̃(k) cos(kxx) cos(kyy) exp(−k2t)

, (2.12a)

vy(r, t) =

∑

k
kyρ̃(k) cos(kxx) sin(kyy) exp(−k2t)

∑

k
ρ̃(k) cos(kxx) cos(kyy) exp(−k2t)

. (2.12b)

Equations (2.11) and (2.12) can be evaluated rapidly using the fast Fourier transform

and its back-transform respectively, both of which in this case run in time of order
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LxLy log(LxLy). We then use the resulting velocity field to integrate Eq. (2.9), which

is a nonlinear Volterra equation of the second kind and can be solved numerically

by standard methods [30]. In practice it is the Fourier transform that is the time-

consuming step of the calculation and with the aid of the fast Fourier transform this

step can be performed fast enough that the whole calculation runs to completion in

a matter of seconds or at most minutes, even for large and detailed maps.

It is straightforward to see that our diffusion cartogram satisfies the fundamental

definition, Eq. (2.1), of a cartogram. In the limit t→∞, Eq. (2.10) is dominated by

the k = 0 term and gives

ρ(r,∞) =
4ρ̃(0)

LxLy

=
1

LxLy

∫ Lx

0

∫ Ly

0

ρ(r′, 0) dx′ dy′ = ρ̄, (2.13)

where ρ̄ is again the mean population density over the area mapped. Furthermore, by

definition, the total population within any moving element of area does not change

during the diffusion process, and hence, denoting by T(r) the final position of a

point that starts at position r, we have ρ(r) dx dy = ρ̄ dTx dTy, and, rearranging, the

Jacobian is given by ∂(Tx, Ty)/∂(x, y) = ρ(r)/ρ̄, in agreement with Eq. (2.1).

Conceptually our algorithm is in some respects similar to the cellular automaton

method of Dorling [3]. Our description of the diffusion method has been entirely

in terms of macroscopic variables and equations, but one could equally look at the

method as a microscopic diffusion process in which each individual member of the

population performs a Gaussian random walk about the surface of the map. Over

time the population will diffuse until it is uniform everywhere within the box enclosing

the map, except for statistical fluctuations. The cartogram is derived by moving all

boundaries on the map in such a way that the net flow passing through them is zero

at all times during the diffusion process. This resembles Dorling’s method in the

sense that different regions trade their area until a fair distribution is reached.

Our method, however, has the advantage of being based on a global, lattice-
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independent process. The exchange of area between regions in Dorling’s method

occurs only between nearest-neighbor squares along the principal axes of a square

lattice and this introduces a strong signature of the lattice topology into the final

cartogram (Fig. 2.5). Furthermore, the cellular automaton method gives only the

displacements of region boundaries whereas our method gives the displacement of

any point on the map. In this respect our algorithm is more like the methods by

Tobler [6], Dougenik et al. [7], and Gusein-Zade and Tikunov [8].

2.4 Population density function

The description of our method tells, in a sense, only half the story of how to create

a cartogram. Before applying this or indeed any method, we need to choose the

starting density ρ(r) for the map. We can, by defining ρ(r) in different ways, control

the properties of the resulting cartogram, including crucially the balance between

accurate density equalization and readability.

Population density is not strictly a continuous function, since people are them-

selves discrete and not continuous. To make a continuous function the population

must be binned or coarse-grained at some level. All methods of constructing car-

tograms require one to do this, and no single accepted standard approach exists. Part

of the art of making a good cartogram lies in shrewd decisions about the definition

of the population density.

If we choose a very fine level of coarse-graining for the population density, then the

high populations in centers such as cities will require substantial local distortions of

the map in order to equalize the density. A coarser population density will cause less

distortion, resulting in a map with features that are easier to recognize, but will give a

less accurate impression of the true population distribution. The most common choice

made by others has been to coarse-grain the population at the level of the (usually

political) regions of interest. For example, if one were interested in the United States,
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one might take the population of each state and distribute it uniformly over the area

occupied by that state. This method can be used also with our cartogram algorithm

and we give some examples below. But we are not obliged to use it, and in some

cases it may be undesirable, since binning at the level of states erases any details of

population distribution below the state level.

On the other hand, if we use a finer resolution and allow for density variation

within states then not only can the local distortions of the cartogram become severe,

but rapidly varying densities can also slow down the numerical calculations. Regions

with population density zero are particularly difficult to deal with because the de-

nominator in Equation (2.8) becomes zero and hence the velocity is undefined. In

our work we circumvent these issues by first adding a small constant to the density

to get rid of zero values, and then applying a spatially uniform Gaussian blur to the

population density thus:

ρ(r) =
1

2πσ2

∫ Lx

0

∫ Ly

0

ρraw(r′) exp

[

−(r′ − r)2

2σ2

]

dx′ dy′, (2.14)

where σ is the width of the Gaussian and ρraw is the unblurred density. Varying the

width σ of the blurring function is a convenient way to tune the cartogram between

accuracy and readability.

This blur can be performed rapidly in Fourier space, where the convolution be-

comes a simple multiplication. Alternatively, we note that Equation (2.14) is equal

to the density we would get if we simply allowed ρraw to diffuse for a time σ2

2
, so that

we can also use Equation (2.10) to calculate the Gaussian blur.

Ultimately the choice of population density function is up to the user of the

method, who must decide what particular features are most desirable in his or her

application. One advantage of our diffusion-based algorithm is that it is entirely

agnostic about this choice; the process of computing the cartogram is decoupled from

the calculation of the population density and, hence, is not slanted in favor of one
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choice or another.

2.5 Applications I: Population cartograms and ag-

gregation

We give several examples of the use of diffusion cartograms, focusing on the United

States and using population data from the 2000 U.S. Census. First, we reexamine the

New York lung cancer map, Fig. 2.1(a), by transforming it to population cartograms,

applying Gaussian blurs of varying width to the underlying population density.4 In

Fig. 2.7(a), we show the cancer distribution on a population cartogram with only

moderate coarse-graining. Although the map is visibly distorted, a reader familiar

with the state of New York would still be able to identify different regions because

of the shape of the state boundaries. The distribution of cancer cases however is still

visibly “clumped.”

In Fig. 2.1(b) we use a much finer Gaussian blur, creating a cartogram with

better population equalization and significantly greater distortion. Now the virtue

of this representation becomes strikingly clear. As the figure shows, when we use a

projection that truly equalizes the population density over the map, there is no longer

any obvious variation in the distribution of cases over the state—the pattern appears

random with more or less the same density everywhere. The shape of the map in

Fig. 2.1(b) does not much resemble the shape of the original any more, but this is

the price we pay for equalizing the population almost perfectly.

We do not need to rely on eyesight for judging whether the distribution of points

in Fig. 2.1(b) is clustered. There are several statistical methods to test spatial dis-

tributions for randomness. A particularly simple measure is the Hopkins statistic H ,

a number between 0 and 1 whose expectation value for random point patterns is 1
2
.

4A similar study with a different technique and for a smaller area was carried out by Merrill [31]
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Figure 2.7: Lung cancer cases among males in the state of New York, 1993-1997, like in
Fig. 2.1(a), but now on population cartograms (a) with a coarse-grained population density
σ = 50 km, (b) with a much finer-grained population σ = 1 km.

Higher values are a sign of clustering; lower values indicate repulsion between points.

Furthermore, it can be shown that the value of the Hopkins statistic on random points

is beta-distributed which allows us to calculate a p-value—the probability that the

observed value of the Hopkins statistic would occur if point positions were purely

random. Details can be found in App. A.

Calculating the Hopkins statistic for Fig. 2.1(a) gives a value of H = 0.89± 0.03

and a p-value < 10−16. This is of course hardly surprising since the distribution shows

very clear clustering around the major urban centers. But when we perform the same

calculation for the points on the cartogram Fig. 2.7(b) we obtain H = 0.50 ± 0.03

consistent with a random distribution. Thus, the per capita risk of lung cancer

appears, by this calculation, to be the same everywhere. One might imagine that

environmental effects such as pollution in big cities could influence cancer rates, but

we see no evidence of this. A more careful analysis of course would have to take

into account that people might move between the time when they are exposed to a

carcinogen and the time when they develop cancer. However, Fig. 2.1(a), despite its

impressive clustering, definitely cannot be taken as evidence that there are high-risk

regions of New York state for cancer. This finding is consistent with medical evidence
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Figure 2.8: Homicides in California in 2001. (a) Equal-area projection. (b) Population
cartogram. Data from the California Department of Health Services.

that lung cancer is caused by individual behavior rather than environmental causes,

with smoking alone responsible for 90% of all cases worldwide (Spira et al., 2004).

Not all threats to our well-being, however, are uniformly distributed. In Fig. 2.8(a)

we plot each of the 2301 homicides that occurred in the state of California in the year

2001 on an equal-area map, and the map again shows clear clustering around urban

areas, particularly the Greater Los Angeles area. Switching once again to a high-

resolution population cartogram, Fig. 2.8(b), we see that the points become more

spread out, as before, but this time it is clear that the distribution is far from random.

Especially in the southwestern part of Los Angeles the density is clearly higher than

average even on the cartogram. The Hopkins statistic confirms this impression. Its

value of 0.68 ± 0.04 for the cartogram indicates that there is clustering even on the

cartogram and the p-value for complete spatial randomness is below 10−8, meaning

the probability that we would get a point pattern such as this purely by chance is

below one in a hundred million. Undoubtedly, some parts of the state experience a

statistically significant higher number of homicides per capita than others.
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For the last example in this section we look at technological rather than social

data and analyze the geographic distribution of the Internet in the contiguous United

States. The Internet is a network of computers and routers connected by optical fiber.

Computers belonging to the same company or organization are typically grouped

together into subnetworks called Autonomous Systems (ASes) or routing domains

that share a single external routing policy. Here we treat each AS as a single point

in geographic space; we have created a map of the Internet using the software tool

NetGeo,5 which can return approximate latitude and longitude for a specified AS.

The positions of the 7049 ASes in the lower 48 states in March 2003 is shown in

Fig. 2.9(a).

That ASes on this equal-area map appear heavily clustered in cities comes as

no surprise since there are more people in the cities. Switching to a cartogram,

Fig. 2.9(b), we find in this case that, like the homicides, the ASes become more

uniform, but are still concentrated around the cities. Some urban areas appear par-

ticularly dense, such as Silicon Valley (west of San Jose), Manhattan (New York

City), or Washington, DC. Other cities, by contrast, appear to have no more ASes

per capita than average—for example, Detroit, Memphis, and Jacksonville. The Hop-

kins statistic for the distribution on the cartogram takes a value of H = 0.80± 0.04,

and the random distribution is firmly ruled out (the p-value is < 10−16). In the early

days of the Internet it was often claimed that geographic position would become

unimportant thanks to high-speed data transmission and easy access to information

from everywhere. Apparently, this has not happened.

5http://www.caida.org/tools/utilities/netgeo
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Figure 2.9: The Internet’s Autonomous Systems in the contiguous United States (March
2003). (a) Equal-area projection. (b) Population cartogram.

2.6 Applications II: Election cartograms

On November 2, 2004, the day of the United States presidential election, and in the

months since then, many of us will have seen maps of the election results in which

each state is colored (conventionally) red or blue to indicate whether more of their

voters voted for the Republican presidential candidate (George W. Bush) or for the

Democratic candidate (John F. Kerry). We show such a map in Fig. 2.10. The map

gives the superficial impression that the “red states” dominate the country, since they
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cover far more area than the blue ones. However, as Dorling pointed out [32], election

maps are often misleading because the conservative (i.e. Republican) strongholds

tend to be in the countryside, whereas cities tend to be politically more liberal (i.e.

Democratic). The blue states may, hence, be small in area, but they are large in

terms of the number of people, which is what matters in an election.

We can correct for this by making use of a cartogram in which the sizes of states

are not proportional to their sheer topographic acreage—which has little to do with

politics—but to the number of their inhabitants. Thus, on such a map, the state of

Rhode Island, which has about a million inhabitants, would appear twice the size of

Wyoming, which has half a million, even though Wyoming has 60 times the acreage

of Rhode Island. Figure 2.10(b) shows the presidential election results on a cartogram

of this type. Population data were taken from the 2000 US Census. The cartogram

reveals what we know already from the news: that the country was quite evenly

divided by the vote, rather than being dominated by one side or the other.

The presidential election is not decided on the basis of the number of people who

vote for each candidate, however, but on the basis of the electoral college. Each state

contributes a certain number of electors to the electoral college, who vote according

to the majority in their state.6 The candidate receiving a majority of the votes in

the electoral college wins the election. The electoral votes are apportioned among the

states roughly according to population, as measured by the census, but with a small

but deliberate bias in favor of less populous states.

We can represent the effects of the electoral college by scaling the sizes of states to

be proportional to their number of electoral votes. The result is shown in Fig. 2.10(c).

This figure looks similar to Fig. 2.10(b), but it is not identical. Wyoming, for instance,

6In theory there are two exceptions: Nebraska and Maine have laws that allow them to divide
up their electoral votes between the candidates. In practice, however, neither of them has ever done
this.
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has approximately doubled its size, precisely because of the bias in favor of states with

smaller populations. The areas of red and blue on the cartogram are now proportional

to the actual numbers of electoral votes won by each candidate. Thus, this map shows

simultaneously which states went to which candidate, and also which candidate won

more votes—something that you cannot tell easily from the normal election-night red

and blue map.

But we can go further. We can do the same thing also with the county-level elec-

tion results and the images are even more striking. Fig. 2.11(a) shows a map of US

counties, again colored red and blue to indicate Republican and Democratic plurali-

ties. Similar maps have appeared in the press and have been cited as evidence that

the Republican party has overwhelming support. Again, however, the populations

of counties vary significantly. The most populous county in the United States is Los

Angeles County, CA, with over 9.5 million inhabitants, while the least populous is

Loving County, TX, with just 67, so there are more than five orders of magnitude

variation between the two extremes. The distribution of populations appears to be

roughly log-normal; a histogram is shown in Fig. 2.12.

Redrawing the county-by-county results on a cartogram, as shown in Fig. 2.11(b),

again gives a more accurate picture of the election. Once more, the blue areas are

much magnified and the total areas of blue and red are nearly equal. However, there

is still more red than blue on this cartogram, even after allowing for population sizes,

while the percentages of voters nationwide voting for either candidate were by contrast

almost identical, so what is going on here?

The answer seems to be that the amount of red on the map is skewed because, of

the larger counties that were won by the Republican candidate, many were won by a

relatively narrow margin. Fig. 2.13 shows a scatter plot of the vote counts by county.

Each point in this figure represents one county and the point’s position shows the

number of votes cast for the two major candidates. The diagonal lines indicate where
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counties would fall with 25%, 50%, and 75% of votes cast for the Republican candi-

date. Most of the points in the plot fall above the 50% line, indicating a Republican

majority, but most of the points representing substantial Republican majorities are

for small counties with fewer votes in total. Counties of medium or larger size—which

account for a large portion of the total area on our cartogram—tend to be won (or

lost) by narrow margins and should therefore be considered neither purely Republican

nor purely Democrat. Nonetheless in Fig. 2.11(b) these counties all appear purely

red or blue, which gives rise to a misleading impression of the vote.

One way to allow for this, suggested by Vanderbei [33], is to use not just two

colors on the map, red and blue, but a range from red to blue via various shades of

purple for the different percentages of votes. In Fig. 2.14, we show the normal map

and the cartogram colored using this scheme. In the cartogram, it appears that only

a rather small area is taken up by true red or blue counties, the rest being mostly

shades of purple.

We believe that the cartograms presented here can go a long way towards correct-

ing some of the most glaring problems encountered with simple geographic represen-

tations of election results.
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Figure 2.10: (a) The standard red and blue map of the results of the 2004 US Presidential
election. The states are colored red if more voters voted for the Republican candidate than
any other, and blue if more voters voted for the Democratic candidate than any other.
(Because a small percentage of votes were taken by third-party candidates, this is not quite
the same as saying a majority of voters voted Republican or Democrat.) (b) A cartogram
in which the sizes of states are proportional to the states’ populations. (c) A cartogram in
which the sizes of states are proportional to the number of votes they have in the electoral
college.
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Figure 2.11: (a) A map of the counties of the United States, again colored red and blue
to indicate Republican or Democratic pluralities. (b) The counties of the United States
redrawn using a population cartogram.
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Figure 2.13: Scatter plot of votes, county by county. Each point represents the vote counts
for the two major candidates in one county in the conterminous United States.
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Figure 2.14: Map (top) and cartogram (bottom) showing the election results on the blue-
purple-red scale in which the amount of blue or red in the color of each county is proportional
to the fraction of votes going to the corresponding candidate (excluding votes for third-party
candidates).
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2.7 Applications III: Cartograms based on other

density functions

The cartograms shown so far have all been based on human population density, which

is certainly the most common type of cartogram. Other types, however, are also

possible and we give some examples in this section

For our first example we examine the usage and production of energy in the

United States. Each year, the US Energy Information Administration estimates each

state’s total energy consumption, including electricity, coal, gas, petroleum, wood,

and alternative energy sources. For instance, in the year 2000 the United States

consumed a total of 98 quadrillion British thermal units of energy. [34]. The use

of energy varies greatly between the states, with Texas, for example, consuming 70

times as much energy as Vermont.

In Fig. 2.15(a) we show a cartogram in which states are scaled according to their

total energy consumption during the year 2000. The cartogram appears quite similar

to the population cartogram in Fig. 2.10(b), indicating that energy consumption per

capita is roughly the same in most parts of the country. On closer inspection one

might detect that the biggest state in Fig. 2.10(b), California, has been overtaken in

Fig. 2.15(a) by what was formerly the second biggest state, Texas. New York and

Florida have also become smaller, Pennsylvania and Louisiana larger, but all in all

the changes are relatively minor—population density explains energy consumption

quite well.

But now look at Fig. 2.15(b), which shows total energy production by state, again

from figures compiled by the Energy Information Administration for the year 2000 and

including crude oil, gas, and coal as well as electricity not generated from fossil fuels.7

This cartogram gives a very different perspective on the country. A small number of

7http://www.eia.doe.gov/emeu/states/2000StateEnergy Sep2003.xls
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states, most notably Texas, Louisiana, and Wyoming, dominate the country’s energy

production, the first two because of their wealth in oil and gas, the third because of

its abundance of coal. Total US energy production is 61 quadrillion British thermal

units, which is only 62% of consumption—the difference is made up of imported

energy—so the total area of Fig. 2.15(b) is smaller than that of Fig. 2.15(a) by the

same factor. Fig. 2.15(a) and (b) together highlight the substantial redistribution of

energy from producer to consumer in the United States.

For our last example we examine the media attention paid to different parts of

the country. Anyone who reads or watches the news in the United States (and similar

observations probably apply in other countries as well) will have noticed that the

geographical distribution of news stories is not uniform. Even allowing for population,

a few cities, notably New York and Washington, DC, get a surprisingly large fraction

of the attention while other places get little. Apparently some locations loom larger in

our mental map of the nation than others, at least as presented by the major media.

We can turn this qualitative idea into a real map using our cartogram method.

We have taken about 72 000 newswire stories from November 1994 to April 1998 [35],

and extracted from each the “dateline,” a line at the head of the story that gives the

date and the location that is the main focus of the story. Binning these locations by

state, we then produce a map in which the sizes of the US states are proportional to

the number of stories concerning that state over the time interval in question. The

result is shown in Fig. 2.16.

The stories are highly unevenly distributed. New York City alone contributes

20 000 stories to the corpus, largely because of the preponderance of stories about the

financial markets, and Washington, DC another 10 000, largely political stories.8 We

chose to bin by state to avoid large distortions around the cities that are the focus

8It should be noted that the dateline is the location of the news agency where the story is reported,
which in some cases is not where the story takes place.
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of most news stories. We made one exception however: since New York City had far

more hits than any other location including the rest of the state of New York (which

had around 1000), we split New York State into two regions, one for the greater New

York City area and another for the rest of the state.

The cartogram is a dramatic depiction of the distribution of US news stories.

The map is highly distorted because the patterns of reporting show such extreme

variation. Washington, DC, for instance, which normally would be virtually invisible

on a map of this scale, becomes the second largest “state” in the union. (The District

of Columbia is not, technically, a state.) People frequently overestimate the size of the

northeastern part of the United States by comparison with the middle and western

states, and this map may give us a clue as to why. Perhaps people’s mental image of

the United States is not really an inaccurate one; it is simply based on things other

than geographical area, such as the attention regions receive in the media.

Numerous other possible applications of cartograms come readily to mind, such

as visualizations of gross regional products, number of people belonging to certain

ethnic groups, sales of certain consumer goods, and so forth. Diffusion cartograms

might also have applications outside geography. One possibility is the creation of a

homunculus, a representation of the human body in which each bodily part is scaled

in proportion to the size of the brain region devoted to it [36]. Such representations

are usually constructed as two-dimensional plots, but there is no reason in theory

why one could not create a fully three-dimensional homunculus; the diffusion process

is easily generalized to any number of dimensions.
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Figure 2.15: (a) A cartogram of the United States in which the sizes of states are propor-
tional to their total energy consumption. (b) A similar cartogram for energy production.
States are the same color in (a) and (b).
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Figure 2.16: Cartogram in which the sizes of states are proportional to the frequency of
their appearance in news stories. States are the same color as in Fig. 2.15.
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2.8 Performance of the algorithm

An important consideration with any method for producing cartograms is efficiency.

In many cases one would like to create cartograms interactively for data exploration,

which means that program run times for producing them should be limited to seconds,

or at most a few minutes for the most complex cartograms such as the larger country-

sized ones shown above. In this section we provide some figures on run times and

analysis of the efficiency of our cartogram method.

We have implemented our algorithm as a C program and it is this implementation

that we analyze here. (No doubt faster implementations than ours are possible, given

time and effort, but we believe ours to give a good general indication of the speeds

attainable.) We analyze the performance of the program in calculating a cartogram

of the lower 48 states and the District of Columbia with each region scaled according

to population, which is the cartogram in Fig. 2.10(b) (without Alaska and Hawaii).

The program goes through the following steps in creating the cartogram (see

App. B). First, the polygons making up the regions of the input map are read from

ASCII files, along with data on the population of each region. Then, a fine square

grid is created and filled with the initial density distribution. The grid spacing has

to be chosen such that the smallest polygon is covered by at least a few grid points.

For the present example we chose a 1024× 512 grid, which is adequate to resolve the

smallest region, the District of Columbia. The program then evaluates the cartogram

transformation for each grid point by solving the diffusion equation as outlined in

Section 2. The positions of the vertices of each polygon are calculated by piecewise

bilinear transformations from the points of the distorted grid.9 For this example our

9It would be entirely possible—and in some cases quicker—to transform the polygon vertices
separately using the diffusion equation, but the grid-based method described here is simpler and
more general and gives results essentially as good; the grid is fine enough that the errors introduced
by the interpolation are small.
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program runs to completion within 31
2

minutes on a standard desktop computer with

a 2.8GHz Intel Pentium IV processor. Total memory used is 22MB.

Another important measure is the accuracy of the algorithm. How precisely are

the final areas proportional to population? We measure the fractional error in each

region’s area by calculating the quantity

relative error =
area of state on cartogram× total population of all states

total area of all states on map× population of state
− 1.

(2.15)

The results are shown as the red bars in Fig. 2.17. Most states are within ±10% of

their target value, with the exception of Washington, DC, and Rhode Island, which

are too small, and Vermont and West Virginia, which are too big. The inaccuracies are

caused partly by sampling the density on a finite grid and partly by approximations

made by the integrator routine. For most applications these errors are probably

acceptable. On the input map the densities vary by more than a factor of 1600

between the densest region, Washington, DC, and the sparsest, Wyoming. On the

cartogram the extreme densities—now Washington, DC, and West Virginia—only

differ by a factor of about 2, or almost three orders of magnitude less.

However, if the errors are a major concern there is a simple way to improve the

result, namely running the algorithm again starting from the cartogram produced

by the first run. The time taken is the same as before, but the area errors are now

reduced to less than 3.5% in all cases (the green bars in Fig. 2.17) which is certainly

much less than can be detected by eye. If even higher accuracy is needed one can

of course run the algorithm as many times as needed. Alternatively, one could make

the initial square grid finer from the start at the expense of longer run-times. For an

Lx×Ly grid the time needed for a single run scales as LxLy log(LxLy), the bottleneck

being the fast Fourier transform. The memory use grows as LxLy. Memory is not

likely to be a problem on current computers for maps of any reasonable size. We have

without difficulty carried out computations on lattices of size up to 4096× 2048.
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Figure 2.17: Relative area errors on a population cartogram of the lower 48 states and
Washington, DC, after applying a C implementation of the algorithm outlined in App. B.

Off-shore islands and donut shaped regions are treated correctly by our method;

their topology will be strictly preserved. If, however, the map consists of several non-

contiguous regions scattered over a wide area with a lot of empty space in between,

covering all of the map with one big grid can be wasteful. For example, on an accurate

map of all fifty states in the USA, Alaska extends so far to the north and Hawaii so

far to the west of the American continent that calculating the cartogram on a grid

wide enough to reach the remotest parts of the country would be very wasteful. We

would in particular spend a large fraction of our effort on points in the middle if the

Pacific Ocean between California and Hawaii, which are irrelevant for most purposes.

Conventionally, map makers move Alaska and Hawaii closer to the contiguous USA

to fit them on one map, but this is a rather poor choice as input to our cartogram

program because moving them closer to the lower 48 states can cause their diffusion

patterns to interact with those of the lower 48, influencing the final shape of the
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cartogram.10 (The areas of the states would still be correct, but their shapes would

be distorted.) A better solution is to construct separate cartograms for Alaska and

Hawaii, and then afterward place them next to the cartogram for the continental

USA in the traditional fashion. Some care must be taken to make sure the population

scale of the different cartograms matches correctly. The cartograms in Fig. 2.15 and

Fig. 2.16 were constructed in this manner.

2.9 Conclusion

In this chapter we have described a new general method for constructing density-

equalizing projections or cartograms, which provide an invaluable tool for the pre-

sentation and analysis of geographic data. Our method is simpler than many ear-

lier methods, allowing for rapid calculations, while generating accurate and readable

maps. The method allows its users to choose their own balance between good density

equalization and low distortion of map regions, making it flexible enough for a wide

variety of applications. We have presented a number of examples of the use of our

cartograms in the representation of human data.

We have implemented our method as a C program which is available from our

web site.11 Directly embedding the algorithm as a function in GIS software packages

should also be straightforward. For even the most complex examples, the program

achieves good density-equalization on the time scale of a few minutes with current

computing resources.

One interesting direction for future research is the creation of cartograms in spaces

10Islands just off the coast, like Long Island, will of course influence diffusion on the mainland too,
but this is correct because these islands really are in the “neighborhood” and their influence should
be felt. The high population of Brooklyn and Queens on Long Island for example should expand
and repel the mainland as in Fig. 2.7, thereby preserving the topology of map.

11http://www.santafe.edu/~mgastner
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that are not flat. Here we have assumed that our mapped space is flat, but this is

never strictly true since the surface of the Earth is curved. Even for an area as large

as the contiguous United States it is usually legitimate to neglect curvature when a

suitable projection is used for the input map (such as the Albers conic projection used

here). For a larger area—a cartogram of the entire world, for instance—this would no

longer be possible. In that case we would have to solve the diffusion equation (2.7)

on the surface of the sphere in spherical coordinates:

1

sin θ

∂

∂θ

(

sin θ
∂ρ

∂θ

)

+
1

sin2 θ

∂2ρ

∂φ2
=

∂ρ

∂t
. (2.16)

The solution can be expressed in terms of spherical harmonics Ylm(θ, φ) thus:

ρ(θ, φ, t) =
∞

∑

l=0

l
∑

m=−l

ρ̃lmYlm(θ, φ) exp[−l(l + 1)t] (2.17)

where

ρ̃lm =

∫

Y ∗
lm(θ, φ)ρ(θ, φ, t = 0) dΩ. (2.18)

As in the Cartesian case we can now use Equation (2.8) to solve for the velocities
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l=0
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. (2.19)

To solve Equations (2.17), (2.18), and (2.19) efficiently we need the equivalent of

the fast Fourier forward and backward transforms for spherical harmonics. Although

such transforms exist, implementations are far from trivial and a current field of

research [37].
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CHAPTER III

FACILITY LOCATION - THE CONTINUOUS

P -MEDIAN PROBLEM FOR A NON-UNIFORM

POPULATION

3.1 Introduction

Suppose we are given the population density ρ(r) of a country or province, i.e. the

number of people per unit area, as a function of geographical position r. And suppose

we are charged with choosing the sites of p hospitals, post offices, supermarkets, gas

stations, elementary schools or similar facilities. This problem belongs to a class

of optimization problems known collectively as “facility location”: Given a set of

demand points, e.g. the home addresses of patients, customers, or schoolchildren,

find a set of facilities which minimizes some objective function. This function might

depend on travel times, land prices, utility costs, local taxes, proximity to customers

and raw materials, and many other factors.

Here we simply wish to minimize the mean distance to the nearest facility for a

member of the population. If the facilities are at positions r1, r2, ..., rp, the objective

function can be written as

f(r1, r2, ..., rp) =

∫

A

ρ(r) min
i∈{1,2,...,p}

|r− ri| d2r (3.1)

which is proportional to this mean distance. The facilities are allowed to lie anywhere

in continuous two-dimensional space. Finding exact solutions, a task known as the

p-median problem, turns out to be very challenging. In Sec. 3.2 we review previous
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work on the p-median problem before presenting a new heuristic solution method

based on simulated annealing in Sec. 3.3.

Even though determining the optimum positions r1, ...rp is difficult, an approx-

imate analytic solution for the density of facilities can be obtained. In Sec. 3.4 we

prove that the density of facilities increases as the two-thirds power of the population

density ρ, which will allow us to draw a connection between the density-equalizing

map projections from Chap. II and the p-median problem. In Sec. 3.5 we investigate

whether real facilities follow the two-thirds power law. We end this chapter with

concluding remarks in Sec. 3.6.

3.2 Literature review

Facility location problems have a long history dating back to the work of Weber in

1909 [38]. Named after him, the “Weber problem” consists of locating one facility

in two-dimensional Euclidean space for a finite number of demand points such that

the sum of the distances between facility and demand points is minimal. (For three

demand points, the solution is the well-known Fermat point of the triangle spanned by

the three points, see Fig. 3.1.) The Weber problem is a special case of Eq. (3.1) with

p = 1 and a finite sum replacing the integral. An efficient and exact solution to the

Weber problem was presented by Weiszfeld already in 1937 [39]. But for p > 1, the

α
βγ

Figure 3.1: A simple facility location problem. The point whose summed distance to three
demand points (squares) is minimal is the Fermat point (circle) in the triangle spanned by
the demand points. It is characterized by α = β = γ = 120◦.
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problem becomes considerably more difficult. Exact solutions for this “multisource

Weber problem” were first obtained by Kuenne and Soland in 1972 [40], but, although

more refined geometric techniques were put forward subsequently, even the largest

exactly solvable problem did not exceed p = 5 and 30 demand points [41]. Since the

p-median problem for a discrete set of demand points is NP-hard [42], it is in fact

very unlikely that an algorithm obtaining exact solutions in a polynomially bounded

time will ever be found. (A decision problem belongs to the class NP if a “yes”

instance can be verified in a time that does not increase faster than a polynomial in

the size of the input. A problem Π is NP-hard if all problems in NP can be solved

in polynomial time after solving Π. NP-hard problems are hence, roughly speaking,

at least as difficult as all problems in NP. Many optimization problems are NP-hard,

e.g. the traveling salesman problem and the knapsack problem. For details see [43].)

The same is incidentally true for the p-median problem on a network [44]. There

we are given a finite set of points V and connections between them, and we are charged

with finding a set W ⊆ V , |W | = p, of facilities such that the mean distance between

points in V and their closest facility along the network’s connections is minimal. Most

work on the p-median problem has in fact concentrated on this network perspective,

with numerous papers describing approximate solutions, e.g. [45, 46, 47, 48, 49].

These results, however, cannot easily be generalized to the case where the facilities are

allowed to be located not only at discrete sites, but everywhere in the two-dimensional

plane.

A number of authors have investigated the latter case, but for discrete sets of

demand points [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. If the demand is given in

the form of a continuous density ρ(r), the p-median problem remains NP-hard [60],

and, to our knowledge, the only heuristic method presented so far is by a group of

Japanese authors [61, 62]. They use an alternative, but equivalent formulation of

Eq. (3.1) based on the observation that p facilities naturally divide the area into p
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Figure 3.2: An example of a Voronoi tessellation. The polygon around each facility (circle)
contains the points closer to this than any of the other facilities.

regions or “cells” such that every region contains the points closest to one of these

facilities (see Fig. 3.2). This construction is known as the “Voronoi tessellation” [63]

and the cells are called “Voronoi polygons” or “Voronoi cells”. Since only the distance

to the nearest facility appears in f , we can decompose the integral as a sum over the

Voronoi cells V1, V2, ..., Vp thus

f(r1, r2, ..., rp) =

p
∑

i=1

∫

Vi

ρ(r)|r− ri| d2r. (3.2)

From this expression it can be proved that the partial derivatives are

∂f

∂xi
=

∫

Vi

ρ(r)
xi − x

|r− ri|
d2r,

∂f

∂yi
=

∫

Vi

ρ(r)
yi − y

|r− ri|
d2r (3.3)

with ri = (xi, yi). Given an initial set of points r
(0)
1 , ..., r

(0)
p , Suzuki and Okabe [62]

proceed by moving each point in the direction of −∂f/∂ri towards smaller values of

f . Then the derivatives for the new set of points are calculated and the points shifted

again in the opposite direction of the gradient. This procedure is iterated until a

local minimum of f is reached and no further improvements can be made. Repeating

the calculation for different initial conditions, the smallest observed local minimum

is often a good approximation of the global minimum.

Implementing this algorithm obviously requires some work: First the Voronoi
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tessellation must be constructed before each iteration, then the integrals of Eq. (3.3)

have to be calculated, and finally we need to decide on a strategy for how far to

move along the direction of the gradient at each step. Several authors have therefore

wondered if such complications could be bypassed by more graphic and intuitive

methods, for example using a suitable map projection. Bunge [64] conjectured that

one solution is to put equally spaced points, e.g. a hexagonal lattice, on a density-

equalizing map projection and transform the positions back to an equal-area map.

Getis [65] and Rushton [66] have worked in this direction, but, as Gusein-Zade [67]

points out, this approach does not even approximately solve the p-median problem.

The crux is that a deformation that makes the population density constant cannot

simultaneously conserve distances (see e.g. [68]). Nevertheless, as we will demonstrate

in Sec. 3.4, there is a connection between the p-median problem and density-equalizing

projections, but in a less direct way.

3.3 A heuristic based on simulated annealing

Summarizing the previous section, the only effective method of minimizing Eq. (3.1)

proposed so far appears to be the steepest-descent algorithm by Suzuki and Okabe.

Their algorithm finds the nearest local minimum, but, since f is neither convex nor

concave, this is usually not globally the best [69]. It seems likely that performance

could be improved by an algorithm that does not always get trapped at the bottom

of the nearest “valley”. In this section we present a new heuristic based on simulated

annealing which not only has this property, but also generally finds better solutions

than the steepest-descent method.

The basic idea of simulated annealing (SA) is to allow the algorithm to escape

from a local minimum by occasionally permitting the objective function to increase,

hoping that the solution will subsequently converge to a lower-lying minimum. To

be concrete, we repeatedly generate new positions for the p facilities. If this leads to
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an increase ∆ > 0 in f , we accept the new configuration with probability exp(−β∆),

where β ≥ 0, or discard it with probability 1 − exp(−β∆). If on the other hand

∆ ≤ 0, we always accept the new positions. (This acceptance probability is known

as the Metropolis criterion. Other probabilities are possible, but less practical [70].)

Initially, β is set to a small value so that practically every arrangement of the p

facilities is accepted. After each iteration, we then raise β, imposing an increasingly

tougher penalty on “uphill” steps. The purpose is to first explore a large portion of

the configuration space and then focus on the regions closer to the minima. After

a certain number of iterations, the current facility positions are returned as the end

result.

An efficient implementation depends crucially on how we generate new positions.

In our work we have used two basic “moves” which change the position of one ran-

domly chosen facility while leaving all others where they were before. In the first type

of move, the facility jumps to a new entirely random position, while in the second

type it is only permitted to move locally by a small amount. Since we only change one

facility at a time, we could in principle avoid the bottleneck of the steepest-descent

algorithm, namely the repeated construction of all Voronoi cells, by dynamically up-

dating the tessellation [71], but we have not yet implemented this option. We also

need to decide on the “cooling schedule,” i.e. the values of β for each iteration. Here

we chose an exponential cooling schedule with a starting value β = 1/f , where f is

the function value for the initial random facility configuration. After each iteration,

β is increased by a factor 1 + 1.5 · 10−6, and we stopped after 1.5 · 106 steps when

usually no further significant improvements of f could be made. Neither reducing the

starting value of β nor slowing down its subsequent increase led to better numerical

results. Faster annealing schedules, however, should be possible if time is a concern.

To compare this new heuristic with the steepest-descent method, we calculated

near-optimal facility locations for four different density distributions and p = 100
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Figure 3.3: Near-optimal facility locations for 100 facilities. Stronger shades of red indicate
a higher population density.

facilities. The minimum of the steepest-descent method, obtained in 20 runs with

different random initial conditions, comes close to the SA result for the uniform

density of Fig. 3.3a, as well as for the smoothly varying density of Fig. 3.3b. The

difference is only a fraction of a percent, 0.07% in the first and 0.18% in the latter

case, with SA performing slightly better in both cases. The difference, however,

becomes more pronounced for the strongly fluctuating density of Fig. 3.3c and the

real population density of the United States, Fig. 3.3d. Here the best minima found

by SA are 3.44% and 7.54% less. In most real facility location problems, the density

looks more like the one in Fig. 3.3d than that in a or b, and, hence, SA will be our

method of choice for the following numerical computations.
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3.4 The relationship between population density

and optimal facility density

It is obvious from Fig. 3.3 that the largest Voronoi cells fall in regions of low population

density. This is not surprising since it gains us little to build many facilities in sparsely

populated areas. A more sensible choice is to distribute facilities in proportion to

population density, so that a region with twice as many customers has twice as many

facilities. But this too turns out to be suboptimal, because we also gain little by having

closely spaced facilities in the highly populated areas—when facilities are closely

spaced, the typical person is not much further from their second-closest facility than

from their closest, so the closest could be removed with little penalty and substantial

savings. The optimum of Eq. (3.1) has to lie somewhere between these two extremes.

Let us define s(r) to be the area of the Voronoi cell in which a person at position r

lives. In two-dimensions such a person will on average be a distance g[s(r)]1/2 from the

nearest facility, where g is a geometric factor of order 1, whose exact value depends on

the shape of the Voronoi cell, but which will in any case drop out of our final result.

Now the distance to the nearest facility averaged over all members of the population

is proportional to f = g
∫

A
ρ(r)[s(r)]1/2 d2r, where we are making an approximation

by neglecting variation of the geometric factor g. Since there are p facilities in total,

s(r) also satisfies the constraint

∫

A

[s(r)]−1 d2r = p. (3.4)

Optimizing the mean distance subject to this constraint gives

δ

δs(r)

[

g

∫

A

ρ(r)[s(r)]1/2 d2r − α

(

p−
∫

A

[s(r)]−1 d2r

)]

= 0, (3.5)

where α is a Lagrange multiplier. Performing the functional derivatives and rearrang-

ing for s(r), we find s(r) = [2α/gρ(r)]2/3. The Lagrange multiplier can be evaluated
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Figure 3.4: Facility density D versus population density ρ on a double-logarithmic plot. A
least-squares linear fit to the data is a line of slope 0.630.

by substituting into Eq. (3.4), and we arrive at the result

D(r) =
1

s(r)
= p

[ρ(r)]2/3

∫

[ρ(r)]2/3 d2r
, (3.6)

where we have introduced the notation D(r) = [s(r)]−1 for the density of the facilities.

Thus, if facilities are distributed optimally for the given population distribution,

their density increases with population density but does so slower than linearly,

namely as a power law with an exponent 2
3
.1 This places most facilities in the densely

populated areas where most people live while still providing reasonable service to

those in sparsely populated areas where a strictly population-proportional allocation

might leave inhabitants with little or nothing. Several authors have proved the same

result by different means [72, 73, 74, 75]; our calculation is most similar to that by

Gusein-Zade [67].

We can use the SA heuristic of the previous section to confirm the validity of

1The analogous calculation can be carried out in any dimension d yielding an exponent d

d+1
in

this general case.

50



our approximations. For the US population density, Fig. 3.3d, and the near-optimal

spatial arrangement of p = 5000 facilities, we determine the Voronoi cell around each

facility, calculate D as the inverse of its area and ρ as the number of people living

in the cell divided by its area. In a double-logarithmic plot with ρ along the x- and

D along the y-axis, we expect the data to follow a line of slope 2
3
. A least-squares

fit to the numerical data yields a slope 0.630, in good agreement with the theoretical

prediction.

Some statistical concerns might be raised about this method. First, we used the

Voronoi cell area to calculate both D and ρ, so the measurements of x- and y-values in

the plot are not independent, and one might suspect that a positive slope is due to a

positive correlation between the measurements rather than the actual densities [76].

Second, estimating the exponent of a power law such as Eq. (3.6) from a double-

logarithmic plot introduces systematic biases [77] and should not be solely relied

upon.

We therefore suggest a different method to test Eq. (3.6) based on the density-

equalizing map projection of Chap. II. As pointed out in Sec. 3.2, facilities on a

population-density cartogram are generally not regularly distributed. But if the pro-

portionality s(r) ∝ [ρ(r)]2/3 holds true, then the size of the Voronoi cells s should

appear approximately constant on a cartogram based on the expected facility density

ρ2/3. Therefore, one way to determine the exponent x from our numerical data is

to find the cartogram based on the density ρx that minimizes the variation of the

Voronoi cell sizes on the cartogram. This approach does not suffer from the short-

comings of the previous method, since we neither use the Voronoi cells to calculate

the population density nor take logarithms. One might argue that the Voronoi cells

on the cartogram are not equal to the projections of the Voronoi cells in actual space.

This is true; the cells generally will not even remain polygons under the cartogram

transformation. The difference, however, is small if the density does not vary much
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Figure 3.5: Near-optimal facility location and Voronoi tessellation on (a) an equal-area
density, (b) a cartogram based on ρ2/3, (c) a cartogram based on ρ. (d) The standard
deviation in the distribution of Voronoi cell areas as they appear on a cartogram against
the exponent x of the underlying density ρx.

between neighboring facilities. (This is, in fact, an assumption we already used in

deriving Eq. (3.6).)

We pointed out in Sec. 2.4 that, to create a continuous population density, some

level of coarse graining or blurring is necessary. Here we apply the Gaussian blur of

Eq. (2.14) with a width σ ≈ 20 km to the US population. This width is smaller than

the average distance between two neighboring facilities for p = 5000. But the blur

gets rid of the small-scale density fluctuations around big cities, where most facilities

are, so that we can neglect the difference between projected and actual Voronoi cells.

The nearly-optimally located facilities are shown in Fig. 3.5a-c on an equal-area

map and two cartograms based on this mildly blurred density for the exponents x = 2
3

and x = 1. Not surprisingly, the points are not homogeneously scattered on the
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equal-area map, 3.5a, since the population density is not uniform and more densely

populated regions have more facilities than less populated ones. But the distribution is

clearly not homogeneous on the equal-population-density cartogram 3.5c either; here

we have overshot the mark since the points appear concentrated where the population

is low. Fig. 3.5b, based on the expected facility density ρ2/3, by contrast, appears to

find the correct compromise between regions of high and low population density.

In Fig. 3.5d, we plot the standard deviation of the Voronoi cell sizes as they appear

on the cartograms against the exponent x. The solid curve, obtained for the p-median

facility distribution, indeed has a minimum near the predicted value x = 2
3
. For a

comparison and as a further test of whether this technique determines the correct

exponent, we have made the same measurement for 5000 points randomly distributed

in proportion to population. Since the density of these points is by definition equal

to ρ, we expect the minimum standard deviation in the cell areas to be at x = 1. The

numerical result, the dotted curve in Fig. 3.5d, agrees with this prediction. Comparing

the solid and the dotted curve, we find that not only the x-values of the minima

differ, but also the minimal y-values. The lower standard deviation of the p-median

distribution indicates that optimally located facilities are not randomly distributed

with a density ∝ ρ2/3. Instead facilities occupy space in a rather regular fashion

reminiscent of the hexagonal lattices in Central Place Theory [78].

3.5 Real facilities

Since we have now established that the optimal facility density for the p-median prob-

lem satisfies D ∝ ρ2/3, one might wonder if real facilities obey this rule. We take three

examples: zip codes, hospitals and a national electronics store chain (RadioShack)

in the lower 48 states. For the zip codes, we have looked up area and population in

GIS databases; here we assume that zip code areas are roughly equal to the Voronoi

cells around mail sorting centers. For the hospitals and stores, we looked up their
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Figure 3.6: Density of real facilities versus population density. (a) Zip codes (approximately
mail sorting centers). (b) Hospitals. (c) Electronics stores.

addresses in online directories, determined their geographic position in terms of lon-

gitude and latitude, and constructed the Voronoi tessellation. For data from the year

2005 there were 29 605 zip codes, 5734 hospitals, and 6064 stores.

In Fig. 3.6, we plot facility against population density on a double-logarithmic

scale for our three examples. The zip code data (Fig. 3.6a), are so widely scattered

that a line of slope 2
3

is within the range of possibilities, but there is room for many

other interpretations as well. Nevertheless, the alternative postulates of uniform

distribution or population-proportional distribution (the two dashed lines) can be

firmly ruled out. One explanation why the data is inconclusive might be the age of

the zip code system. Since its introduction in 1963, the population distribution has

changed and potentially randomized an earlier power law relation.
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The hospital data (Fig. 3.6b) is less scattered, but is not well approximated by

a simple power law. For low population density, the exponent appears to be less

than 2
3
, whereas for high density it is closer to 1. This behavior might be caused by

saturation effects. If the distance to the nearest hospital is too long, it is not of any

use to a patient, and hence the hospital density can for practical reasons not go to

zero even in nearly unpopulated areas. In highly populated areas, on the other hand,

hospitals might be limited by the number of patients they can accept; no hospital can

treat more than a few thousand at the most. If hospitals operate near saturation, the

only way to serve all patients is to build more hospitals so that their density, in this

limit, grows almost in proportion to the population. Hence, hospital locations are

not optimal in terms of Eq. (3.1), but it is possible that such an optimization plays

a role for medium densities. Stephan, who compiled a list of exponents for various

facilities in 1987, in fact reports an exponent 0.68 for hospitals [79].

The data for the electronics stores (Fig. 3.6c) are less ambiguous since the points

fall pretty much along a line. A least-squares fit yields a slope 0.83, almost exactly

halfway between the expected exponents for a p-median distribution and an equal-

population distribution, 2
3

and 1. This finding confirms Stephan’s observation that

exponents near 2
3

are observed for non-profit facilities such as post offices, hospitals,

or county seats, but for business facilities the exponents are usually closer to 1.

Stephan and later Gusein-Zade [80] have proposed a modification of Eq. (3.1)

that might explain exponents different from 2
3
, namely replacing |r− ri| by |r− ri|β.

Repeating the calculation of Sec. 3.4, we are then led to D ∝ ρ2/(2+β). Exponents

> 2
3

hence require β < 1, meaning that large distances are less penalized than in the

p-median problem. For business facilities competing for customers, such as a store

chain, this situation is not entirely plausible. The farther away the nearest store

location is from a customer, the more likely is the competition to run a store closer

to him, which should put larger distances at a rather over-proportional disadvantage.
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Instead of tweaking Eq. (3.1), it would be more interesting to investigate the effects

of competition between different facility types, but this would go beyond the scope

of this dissertation.

3.6 Conclusion

We have in this chapter studied the p-median problem which consists of finding the

positions of p facilities in geographic space such that the mean distance between cus-

tomers and their nearest facility is minimized. Although obtaining exact solutions is

practically not feasible, we have shown that a simple heuristic based on simulated an-

nealing achieves good results improving the performance of a simple steepest descent

algorithm.

Analytic arguments indicate that the density of facilities should be proportional

to the population density to the two-thirds power. We have tested this relation by nu-

merically solving the p-median problem for the population density of the conterminous

United States using the simulated annealing heuristic. The thus calculated facility

distribution confirms the algebraic relation between the two densities. Although real

data provide a more complex picture, the p-median problem is the natural starting

point for future investigations of facility location problems.

56



CHAPTER IV

SHAPE AND EFFICIENCY IN GROWING

SPATIAL DISTRIBUTION NETWORKS

4.1 Introduction

In the previous chapter we studied the distribution of point-like facilities, such as

post offices, hospitals, or electronics stores. In many cases, these facilities are not

isolated points; instead they are interconnected as networks to transport goods and

services between different facilities. Post offices, for example, deliver mail over a

network of truck, rail and air links from one location to another. Power stations

distribute electricity over a network of transmission lines and relay stations to house-

holds. Department stores receive their products from warehouses across the country

via a network of truck deliveries. Libraries are networked to participate in interli-

brary loan services for sharing rarely requested books. And the list goes on. The

next logical step in our analysis of spatial distribution phenomena, therefore, will be

to consider networked systems.

A network (or graph) is a set of points or vertices joined together in pairs by lines

or edges (Fig. 4.1). Networks provide a useful framework for the representation and

modeling of many technological, biological, and social systems, and have received a

substantial amount of attention in the past few years. Reviews of recent developments

can be found in [81, 82, 83]. The remainder of this dissertation deals with the special

case of networks in which the vertices occupy particular positions in geometric space.

Not all networks have this property—web pages on the world wide web, for example,
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vertex

edge

Figure 4.1: A small example network with ten vertices and nine edges.

do not live in any particular geometric space—but many others do. Examples include

transportation networks, communication networks, and power grids. Although the

study of spatial networks has a history of several decades [84, 85, 86], it has only

come back into the limelight during the latest surge of network research. The past

and current literature on spatial networks will be reviewed in Sec. 4.2.

In this chapter we study and model the spatial layout of man-made distribution

or collection networks, such as oil and gas pipelines, sewage systems, and train or air

routes. The vertices in these networks represent, for instance, households, businesses,

or train stations and the edges represent pipes or tracks. The networks considered

here also have a “root node,” a vertex that acts as a source or sink of the commodity

distributed—a sewage treatment plant, for example, or a central train station.

Geography clearly affects the efficiency of these networks. There are various pos-

sible definitions of efficiency and optimality [87, 88, 89]; in this paper we follow an

idea put forward by Stevens [90]. A “good” distribution network, as we will consider

it, has two definitive properties. First, the network should be efficient in the sense

that the paths from each vertex to the root vertex are relatively short. That is, the

sum of the lengths of the edges along the shortest path through the network should

not be much longer than the “crow flies” distance between the same two vertices: if a

subway track runs all around the city before getting you to the central train station,

the train is probably not of much use to you. Second, the sum of the lengths of
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all edges in the network should be low so that the network is economical to build

and maintain. These two criteria are generally conflicting goals, but real networks

nonetheless manage to find solutions to the distribution problem that come remark-

ably close to being optimal in both senses. We suggest possible explanations for this

observation in the form of two growth models for geographic networks that generate

networks of comparable efficiency to our real-world examples.

4.2 Literature review

There has in the last few years been considerable interest, mostly from the statistical

physics community, in the analysis and modeling of networked systems. Some of

the networks studied, such as scientific citation networks [91], protein interaction

networks [92] and the world-wide web [93, 94], exist only in an abstract “network

space” where the precise positions of the vertices have no particular meaning. But

many others exist in literal physical space with vertices having well-defined positions.

The edges in these networks are often real physical constructs, such as roads or

railway lines in transportation networks [95], optical fiber or other connections in the

Internet1 [96], cables in a power grid [97], or pipes in a water distribution network [98].

In other cases the edges may be more ephemeral, such as flights between airports [99],

business relationships between companies [100], or wireless communications [101].

Interest in the spatial structure of networks dates back to the quantitative geo-

graphy movement of the 1960s and 70s [84, 102, 86, 103, 104, 105, 106] and partic-

ularly the work of Kansky [85]. Early work was hampered however by limited data

and computing resources, and geographers’ attention moved on after a while to other

1Colloquially, the terms “Internet” and “World Wide Web” are often used synonymously. From
a technological perspective, however, they are completely different objects. While the Internet is a
physical network of computers, routers and fiber cables, the World Wide Web is a network of web
sites connected by hyperlinks. The Internet is hence a spatial network, whereas the World Wide
Web is not.
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topics. Networks are now again on the scientific forefront, but spatial aspects have

received comparatively little attention. Empirical studies of networks, even networks

in which geography plays a pivotal role, have, with some exceptions, focused mostly

on topological, i.e. non-geographic, features [96, 107, 95]. Similarly, the best-known

theoretical models of networks either make no reference to space at all [108, 109], or

they place vertices on simple regular lattices whose structure is quite different from

that of real systems [110, 111].

Recently, several models have been proposed that incorporate more sophisticated

geographic features, but empirical geographic data against which one might verify

such models is still mostly lacking. These models fall roughly speaking in two cat-

egories. In the first category, all vertices and edges are present from the beginning,

whereas in the second category the network grows as time progresses.

4.2.1 Non-growing spatial network models

Many of the commonly studied graphs in computational geometry belong to this first

category, such as the minimum spanning tree, random geometric (or disk) graph,

Delaunay graph, k-nearest-neighbor graph, and sphere-of-influence graph (Fig. 4.2).

The definitions are as follows.

• The minimum spanning tree (MST) on a set of n given vertices is the set of

n− 1 edges joining them such that all vertices belong to one single component

and the sum of the lengths of all edges is minimized. In other words, the MST

is the shortest of all connected networks on the given set of vertices.

• The random geometric graph contains all possible edges shorter than a certain

distance dlim, but no edges larger than dlim [112, 113, 114]. Random geometric

graphs are often used as a model for wireless communication networks [115, 116].

Depending on dlim, the graph can consist of several disconnected components.

The size of the components as a function of dlim is of interest for continuum
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Figure 4.2: Some commonly studied geometric graphs. (a) Minimum spanning tree. (b)
Random geometric graph. (c) Delaunay graph. The dashed lines indicate the Voronoi
tessellation. (d) Nearest neighbor graph. (e) 2-nearest neighbor graph. (f) Sphere-of-
influence graph. The circles represent the boundaries of the spheres of influence.

percolation models [117, 118, 119].

• The Delaunay graph is based on the Voronoi tessellation of the vertex set. All

vertices belonging to adjacent cells are connected [120]. Delaunay graphs always

contain one single component, and none of the edges intersect. The MST is a

subgraph of the Delaunay graph [121].

• In the k-nearest neighbor graph, the edge between two vertices i and j exists

only if i is among the k vertices closest to j or if j is among the k vertices closest

to i. The special case k = 1, also simply known as nearest neighbor graph, is a

subgraph of the MST.

• The sphere-of-influence graph is constructed in the following manner. If the

vertices have positions r1, r2, ..., rn, the ball around each vertex x with radius

miny∈{1,2,...,n}\x dxy, where dxy is the Euclidean distance between the vertices x
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and y, is called x’s sphere of influence. This is in other words the smallest

ball around x that contains (at least) one vertex other than x. Now connect

all vertices whose spheres of influence overlap to obtain the sphere-of-influence

graph.

These graphs, although of considerable interest for the mathematics and computer

algorithms community, are only rarely suitable models of real networks. Recent net-

work research has, for example, shown the existence of highly connected vertices in

many different networks. The number of edges ki attached to a vertex i is called

the degree of i. For many real networks, the probability distribution for a vertex to

have degree k is very broad, often approximately following a power law p(k) = k−θ.

The models above, however, have narrow degree distributions, unless the vertex po-

sitions are rather pathologically distributed [122, 123]. Rozenfeld et al. [124] and

independently Warren et al. [125] therefore proposed a generalization of the k-nearest

neighbor graph, where the degree of every vertex is randomly drawn from a power

law distribution.

Besides heavy-tailed degree distributions, a commonly found feature of real net-

works is the “small-world” property: No pair of vertices is separated by more than

a small number of edges. The minimum number of edges along a path between two

vertices is called their “graph distance”. (It should not be confused with the geo-

metric distance, see Fig. 4.3.) On the other hand, most connections are made on

a local level in the sense that the probability for a connection between i and j is

high if both i and j are connected to one common neighbor k, a property known as

“clustering”. Watts and Strogatz explained this phenomenon with a model where

vertices first make connections to their nearest neighbors, and subsequently a small

number of longer edges are added to the network [110]. These additional edges create

“shortcuts” that can reduce the average graph distance significantly. In their origi-

nal model, shortcuts were chosen uniformly at random. In spatial networks, on the
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lij = 2.95

dij = 2.89

path of shortest
graph distance hij

path of shortest geometric
distance in the network lij
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between     andi          j
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Figure 4.3: The distance between two vertices i and j in spatial networks can be measured
in different ways. The Euclidean or “crow flies” distance dij is measured along a straight line
between the vertices. If there is no edge between i and j, the effective geometric distance
lij in the network will generally be longer. The shortest geometric path does not need to be
the shortest path in terms of the number of edges. In the network above the geometrically
shortest route (dotted) traverses five edges, whereas the dashed path only consists of three.
The smallest number of edges along any path between i and j is called “graph distance”.
Here we denote it hij.

other hand, a shortcut between two vertices i and j is less likely if their geometric

distance dij is large. Several authors have investigated shortcut probabilities that

decay as ∝ dij
−µ. Kleinberg [111] studied navigation strategies on such networks and

found that, in two dimensions, for µ = 2 efficient navigation from vertex to vertex is

possible even without global knowledge of all edges in the network. Sen et al. [126]

analyzed the average path length and clustering coefficient in one dimension, whereas

Petermann and De Los Rios [127] focused on wiring costs and robustness as functions

of µ.

Many of the models analyzed by operations researchers also fall under the cate-

gory of non-growing spatial networks. There, the objective is the design of a network

with optimum functionality, for example measured by cost or travel time. A survey of

typical problems can be found in [128]. One particular example is the “Optimal Net-

work Problem” posed by Scott [12] and later modified by Billheimer and Gray [129].

This model is central to the next chapter and will be introduced there.
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4.2.2 Growing spatial network models

In many networks, neither the positions of vertices nor the connections between them

are initially known. Instead, which vertices and edges are to be added to the network

might be decided at a later stage. Examples are subway networks that slowly expand

over decades, or power lines that are extended to newly developed neighborhoods.

Barabási and Albert have identified growth as an important ingredient in modeling

non-spatial networks [109]. They have shown that preferentially attaching new ver-

tices to already existing highly connected vertices reproduces the power law degree

distributions frequently seen in real networks.

In spatial networks, the distance between vertices will also play a role; nearby

vertices are more likely to be connected than vertices far apart. A generalization of

the Barabási-Albert model that takes this distance into account works as follows. We

begin with a small network of m vertices containing all m(m − 1)/2 possible edges

between them. (Such a network is called a complete graph.) Then, we repeatedly add

one new vertex i at a random position and connect it with m edges to previously

placed vertices. The probability P (i, j) that one of these edges connects i to j is

assumed to be proportional to

P (i, j) ∝ kj
λf(dij) (4.1)

where kj is the degree of j, dij the distance between i and j, λ a non-negative real

number, and f a monotonically decreasing function.

Several recent papers investigated this model (or slight variations) for specific

values of λ and specific functions f . Yook et al. [130], for example, chose a polynomial

f(dij) = dij
−µ claiming that the model for λ = 1 and µ = 1 reproduces essential

features of the Internet. However, Lakhina et al. [131] convincingly showed that

a better agreement with actual geographic data on the Internet is achieved by an

exponential f(dij) = exp(−νdij) with ν ≈ 200 km. This latter case is also known as
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the Waxman model [132], and is used by the Internet topology generator BRITE [133].

(Internet topology generators are programs simulating the structure of the Internet.

They are important for optimizing Internet software and protocols.)

Further studies differ mostly by choosing f either as a polynomial or exponential.

Sen and Manna [134, 135] studied the first case for various values of λ and µ, and

identified a phase transition in the degree distribution. On one side of the transition,

the distribution is a stretched exponential, on the other side, one vertex is connected

to all other vertices, a phenomenon called “gelation”. Along the phase boundary

the degree distribution is a power law. Xulvi-Brunet and Sokolov, although placing

vertices on a lattice and not in continuous space, report similar results for λ = 1 [136].

Barthelemy [137], by contrast, investigated the Waxman model and the depen-

dence of network properties, such as degree distribution and clustering coefficient,

on the parameter ν. In order to match empirical data of airport networks, Bar-

rat et al. [138] modified the model by introducing an additional factor in Eq. (4.1) for

each vertex, which the authors refer to as “strength”. Kaiser and Hilgetag [139], on

the other hand, simplified the model by setting λ = 0, so that there is no dependence

on the degree kj. They also drop the constraint that exactly m edges are added at

each step; instead all possible connections are investigated, and, if the new vertex

could not establish any connections, it is removed.

A fundamentally different model was put forward by Fabrikant et al. [140]. Ver-

tices are again added one after another at random positions. Let us call the first

placed vertex 0. The i-th vertex in this model no longer preferentially attaches to

high degrees, but to the previous vertex j that minimizes a weighted sum of the

Euclidean distance between i and j, dij, and graph distance from j to 0, hj0:

min
j<i

ξdij + hj0, ξ ≥ 0 (4.2)

The model is motivated by the Internet, where dij represents the “last-mile” cost
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to connect a new user to the network, and hj0 captures the operation cost due to

communication delays. Originally, the model was believed to produce a power law

degree distribution similar to the one observed for the Internet for certain values of ξ.

However, Berger et al. [141] proved that this is not true because the majority of the

vertices have degree one, and another substantial fraction has very high degree so that

the distribution is bimodal and only follows a power-law between the two peaks. The

model is, nevertheless, fascinating in its own right and has inspired Berger et al. [142],

and Alvarez-Hamelin and Schabanel [143] to similar ideas.

4.2.3 Other growth models

Physicists’ interest in growth models predates their work on networks by several

decades. Here we mention three well-studied models—invasion percolation, diffusion-

limited aggregation and the Eden model—which, although not directly related to

networks, are relevant in the present context since they also deal with growing spatial

objects.

In invasion percolation, bonds in a square lattice are assigned random weights

from a uniform distribution. Starting from a set of initial seeds, for example sites on

the left-hand side of the lattice, a cluster is built by repeatedly adding the edge on

the cluster’s surface that has the smallest weight [144, 145]. The process ends when

the cluster first reaches the opposite end of the lattice. The model simulates the

displacement of one fluid by another, for example oil by water, in a porous medium.

The random weights in the model represent pore diameters, and the dynamics of the

growing cluster mimics the fact that the invading fluid advances first along the nar-

rowest pore necks where the capillary force is strongest. The final cluster, Fig. 4.4(a),

is geometrically self-similar, i.e. zooming in on a smaller portion of the cluster we find

features typical of the cluster as a whole. In particular, there are “holes” ranging from

micro- to macroscopic length scales. Because of these gaps, it would be inappropriate
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Figure 4.4: Clusters obtained by different growth models. (a) Invasion percolation.
Reprinted with permission from [9], c©1988 The American Physical Society. (b) Diffusion-
limited aggregation. Reprinted with the author’s permission from [10]. (c) Eden model [11].
Colors in (a) and (b) represent when particles joined the cluster, in (c) they indicate the
shape of the cluster at different points in time.

to assign a dimension of 2 to these clusters because the available two-dimensional

space is not effectively filled during the growth process. Instead, it turns out that

invasion percolation produces clusters with a fractal dimension between one and two.

We will define this concept more precisely in Sec. 4.3. Here it shall suffice to state the

literature value, 1.89, which is incidentally also the fractal dimension of the spanning

cluster of ordinary percolation at the critical point [146].2

A very different class of fractals is obtained by diffusion-limited aggregation, first

introduced by Witten and Sander [147, 148]. After a seed particle is placed at the

2The picture presented here becomes considerably more complicated if the defending fluid is
incompressible, see [146].
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central site of a square lattice, another particle is launched far from the center per-

forming a random walk on the lattice until it reaches a site adjacent to the seed.

There the particle stops and a new particle is launched which randomly walks until

it touches one of the two previous particles, and so forth. Big clusters grown in this

fashion, like the one in Fig. 4.4(b), have a characteristic “dendritic”, i.e. tree-like

branching structure. This shape is due to a “screening” effect: A diffusing particle is

more likely to stick to the tip of a branch than to walk into one of the “fjords”. Orig-

inally intended as a model for growth in colloids or coagulated aerosols, it has been

used in a variety of other contexts from bacterial colonies [149] to urban sprawl [150].

Similar, but leading to yet again completely different aggregates, is the Eden

model [151]. Starting from a central seed site on a square lattice, one of the unoccupied

sites adjacent to the current cluster is chosen randomly and added to the cluster.

Since there is no screening effect as before, the resulting clusters are compact and

nearly spherical (Fig. 4.4(c)). The surface however has non-trivial properties; careful

analyses have revealed self-affine scaling of its roughness [152]. Like diffusion-limited

aggregation, the Eden model has found applications in many areas such as solid state

physics [153], tumor growth [154] and human settlement patterns [155]. More details

on fractal growth models can be found in [156].

4.3 A network growth model with minimum total

length

In order to develop a model of a spatial distribution network, we will assume that the

only cost in building a network is the total length of its edges. The cheapest of all

possible networks then is the MST.3 The construction of the MST requires that we

3If we are not restricted to the specified vertex set, but are allowed to add vertices freely, then the
optimal solution is the Steiner tree. The construction of a Steiner tree is an NP-hard problem [157],
and hence not feasible for all but very small networks. The total length of the MST can be proved
to be in the worst case only a factor 2/

√
3 ≈ 1.15 more than that of the Steiner tree [158], and all
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Figure 4.5: The first few steps during the construction of a growing minimum spanning tree.
At the beginning, only the root vertex (square) is part of the tree. Then we repeatedly add
the shortest edge between one connected and one unconnected vertex.

know which vertices will be included in the network. However, if the network forms

by growing outward from a root vertex as the population swells and infrastructure

is extended and improved, the number of vertices in the final network cannot be

predicted from the start. Instead we study a variation of the static MST which might

be called a “growing” or “invading” minimum spanning tree [159].

We assume that at the beginning we are given the positions of the root vertex, e.g.

an oil well or a central train station, and of several other points, e.g. houses or towns,

that are candidates to join the network. A cluster connected to the root is built up by

repeatedly adding the shortest edge that joins one unconnected vertex to another that

is part of the cluster. In Fig. 4.5, the first few steps of this growth process are shown.

This algorithm is “greedy” in the sense that at each step the added edge is the one

that increases the network length by the smallest possible amount. Prim’s algorithm

for constructing static MSTs uses in fact the same strategy. Hence, if we keep adding

the shortest connection until all vertices are connected, there is no difference between

growing and static MST. Here, however, we assume that the number of candidate

results in table 4.1 of Sec. 4.4 remain practically unchanged if Steiner trees were used instead of
MSTs.
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Figure 4.6: Growing minimum spanning tree with 100 000 vertices.

vertices is infinite so that the growth continues indefinitely.

Fig. 4.6 shows a large growing MST on a random point distribution. (We have

normalized the length scale by setting the average density equal to one.) Colors

indicate when the edges were added. The similarity with the invasion percolation

cluster of Fig. 4.4(a) is noteworthy. The construction of the network is in fact closely

related to invasion percolation. Although the vertices in our model do not lie on

a regular lattice, we can think of the Delaunay graph as some kind of distorted

lattice [160]. Since every possible edge in the MST belongs to the Delaunay graph,

the growing MST can be mapped onto an invading percolation cluster on this distorted

lattice. However, unlike invasion percolation, the weights are neither uniformly nor

independently distributed. For a random point pattern, distances follow a Poisson

distribution and, furthermore, the weight of each edge is equal to its Euclidean length.

This last fact introduces quite complicated dependences between the different weights

making a rigorous mathematical treatment difficult, but there are good reasons to

conjecture that the growing Euclidean MST falls in the same universality class as

ordinary percolation.

To support this conjecture, we have calculated the fractal dimension of the set of

vertices in the tree as well as the fractal dimension of its external perimeter. The
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Figure 4.7: (a) The Voronoi cells of the tree in the last panel of Fig. 4.5. All cells containing a
connected vertex are marked red and the perimeter is highlighted in green. (b) The interior
and perimeter of the tree of Fig. 4.6.

perimeter is defined by constructing the Voronoi cells for all vertices, including those

that are unconnected. Every cell containing a connected vertex is considered as filled,

all others as empty. The external perimeter divides the filled Voronoi cells from the

unbounded empty exterior, see Fig. 4.7(a). A typical arrangement of filled Voronoi

cells for a large network on a random point pattern is shown in Fig. 4.7(b). The

interior contains numerous holes of various sizes and is bounded by a complex curve

with “fjords” reaching deep into the cluster.

One of many (more or less equivalent) ways to define a fractal dimension is based

on density correlations. First, we fix a number of vertices v1, v2, ..., vk belonging to

the tree. Then we count the number of connected vertices in the tree inside a ball of

radius ǫ about vi, Ni(ǫ). The sum of these numbers is expected to grow as ǫd in d

dimensions. Hence, we can calculate d as the derivative

d =

d log

(

∑k
i=0 Ni

)

d log(ǫ)
. (4.3)

The value of d obtained in this manner is the correlation dimension [161]. For points

on an n-dimensional lattice we retrieve the expected result d = n. However, generally

d does not need to be an integer; in this latter case, the network is a fractal and d is

called the fractal dimension.
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Figure 4.8: Typical measurement of log

(

∑k
i=0 Ni

)

versus log(ǫ) for the interior of a growing

MST with k = 50 and 100 000 vertices. In the scaling regime (1 ≤ ǫ ≤ 4), the slope of a
linear fit is approximately equal to the network’s fractal dimension d.

Strictly speaking, the above derivative depends on ǫ, as a typical example in

Fig. 4.8 shows. For very small ǫ, the only point in each ǫ-ball is the center itself,

hence the slope becomes zero. The same happens for large ǫ because each ǫ-ball

encloses the whole tree. Only for intermediate values of ǫ can we expect the slope to

be a good estimate of the fractal dimension. We have therefore calculated d as the

slope in the region of the steepest descent. We tested this approach on point patterns

of known dimensions such as lines or areas and found this method to work very well

if an average over several measurements is taken. Based on networks with 100 000

vertices each, we find a fractal dimension of Dnetw = 1.89± 0.02 which is the same as

for invasion percolation clusters.

Applying the same technique to the external perimeter, we determined its fractal

dimension to be Dper = 1.36 ± 0.03. Hence, the perimeter is not a simple one-

dimensional line because it extends into all the fjords along the boundary. The

fractal dimension is again consistent with that of the external accessible perimeter of

invasion percolation clusters, 4/3, which supports our conjecture that growing MSTs
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belong to the same universality class.4 In Sec. 4.5 and 4.6 we will analyze how simple

modifications of the presented growth model lead to quite different fractal geometries.

4.4 The efficiency of real networks

Let us now compare the properties of MSTs with some real-world distribution net-

works. We consider four examples as follows. The first network is the sewer system

of the City of Bellingham, Washington. From GIS data for the city, we extracted the

shapes and positions of the parcels of land (roughly households) into which the city is

divided and the lines along which sewers run. We constructed a network by assigning

one vertex to each parcel whose centroid was less than 100 meters from a sewer. The

vertex was placed on the sewer at the point closest to the corresponding centroid

and adjacent vertices along the sewers were connected by edges. The city’s sewage

treatment plant was used as the root vertex, for a total of 23 922 vertices including

the root.

Our next two examples are networks of natural gas pipelines, the first in Western

Australia (WA) and the second in the southeastern part of the US state of Illinois

(IL) 5. We assigned one vertex to each city, town, or power station within 10km (WA)

or 10,000 feet (IL) of a pipeline. The vertex was placed on the pipeline at the point

closest to each such place, and adjacent vertices were joined by edges. The root for

WA was chosen to be the shore point of the pipeline leading to the Barrow Island

oil fields and for IL to be the confluence of two major trunk lines near the town of

Hammond, IL. The resulting networks have 226 (WA) and 490 (IL) vertices including

4However, the fractal dimension of an invasion percolation cluster’s hull is bigger, namely
7/4 [146]. There is no obvious geometric construction for growing MSTs which has this fractal
dimension.

5South of 41.00◦N and east of 89.85◦W. We consider only the largest component within this
region.
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Figure 4.9: (a) Commuter rail network in the Boston area. (b) Minimum spanning tree.
(c) Star graph. The arrow marks the assumed root of the network. Paths in the real
network, like the one highlighted in red, are more direct than in the minimum spanning
tree. In fact they are almost as short as the straight line connections of the star graph.

the roots.

For our last example we take the commuter rail system operated by the Mas-

sachusetts Bay Transportation Authority in the city of Boston, MA (Fig. 4.9a). In

this network, the 125 stations form the vertices and the tracks form the edges. In

principle, there are two components to this network, one connected to Boston’s North

Station and the other to South Station, with no connection between the two. Since

these two stations are only about one mile apart, however, we have, to simplify calcu-

lations, added an extra edge between the North and South Stations, joining the two

halves of the network into a single component. The root node was placed halfway

between the two stations for a total of 126 vertices in all.

In Table 4.1, we show the total edge lengths for each of our networks, along

with the edge lengths for the MST on the same set of vertices. We find that the real-

world networks, although not strictly optimal, are quite competitive with MSTs. The

combined edge lengths of the real networks range from 1.12 to 1.63 times those of the

corresponding MSTs. But even though the MST on the set of stations in the Boston

commuter rail network, Fig. 4.9(b), is merely 11% shorter, it does not resemble the

real network much. Looking at some of the paths in Fig. 4.9(a) and (b), we find that
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edge length (km) route factor
network n actual MST star actual MST star
sewer system 23 922 498 421 102 998 1.59 2.93 1.00
gas (WA) 226 5 578 4 374 245 034 1.13 1.82 1.00
gas (IL) 490 6 547 4 009 59 595 1.48 2.42 1.00
rail 126 559 499 3 272 1.14 1.61 1.00

Table 4.1: Number of vertices n, total edge length, and route factor q for each of the
networks described in the text, along with the equivalent results for the star graphs and
minimum spanning trees on the same vertices.

the paths to the root tend to be more circuitous in the MST than in reality. Hence,

passengers would have to take quite long journeys in the MST, even from stations

whose “crow flies” distance to the root is rather short. These circuitous routes would

of course be annoying, and a good reason why one would not build the MST, but

some different network.

To make a comparison between MSTs and real networks, we consider the distance

from each non-root vertex to the root first along the edges of the network and second

along a simple Euclidean straight line, and calculate the mean ratio of these two

distances over all such vertices. Following Ref. [162], we refer to this quantity as the

network’s route factor, and denote it q:

q =
1

n

n
∑

i=1

li0
di0

, (4.4)

where li0 is the distance along the edges of the network from vertex i to the root

(which has label 0), and di0 is the direct Euclidean distance. (A similar measure

“tortuosity” was used in [159].) If there is more than one path through the network

to the root, we take the shortest one, but, since our examples are all nearly trees,

most paths are unique. Thus, for example, q = 2 would imply that on average the

shortest path from a vertex to the root through the network is twice as long as a

direct straight-line connection.

The smallest possible value of the route factor is 1, which is achieved by the “star
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graph”, Fig. 4.9(c), in which every vertex is connected directly to the root by a single

straight edge. The route factors for the four real networks are shown in Table 4.1. As

we can see, paths in the networks, although not perfectly straight, are in most cases

not far away from simple straight lines, with route factors quite close to 1. Actual

values range from q = 1.13 for the Western Australian gas pipelines to q = 1.59 for

the sewer system. Furthermore, the route factors in all real networks are consistently

better than those in the MSTs.

But now consider the column in the table, which gives the the total edge lengths

for the star graphs. These figures are for all networks much larger than the optimal

case and, more importantly, much poorer than the real-world networks too. Thus,

although the MST is optimal in terms of total edge length it is very poor in terms of

route factor and the reverse is true for the star graph. Neither of these models would

be a good general solution to the problem of building an efficient and economical

distribution network. Real-world networks, on the other hand, appear to find a

remarkably good compromise between the two extremes, possessing simultaneously

the benefits of both the star graph and the minimum spanning tree, without any of

the flaws. In the remainder of this chapter we consider two mechanisms by which this

might occur.

4.5 A network growth model with low route factor

Our first attempt to explain these observations is a modification of the growing MST

of Sec. 4.3. Like the growing MST, this modified model will build a growing network

based on a “greedy” optimization criterion that always adds the current best candi-

date edge. However, now the best candidate is not simply the shortest edge; instead

the route factor will become part of the decision about which vertex to add next.
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This is simply done by specifying a weight for each edge (i, j) thus:

wij = dij + α
dij + lj0

di0

, (4.5)

where α is a non-negative independent parameter. As before, dij is the direct Eu-

clidean distance between vertices i and j and lij the distance along the shortest path

in the network. The first term in (4.5) is the length of the prospective edge, which

represents the cost of building the corresponding pipe or track, and the second term

is the contribution to the route factor from vertex i. At every step we now add to

the network the edge with the global minimum value of wij. The single parameter

α controls the extent to which our choice of edge depends on the route factor. For

α = 0, the network is a growing MST, which we found to give unrealistically high

route factors. As α is increased from zero, however, the model becomes more and

more biased in favor of making connections that give good values for the route factor.

For simplicity we will, as we already did in Sec. 4.3, assume that the vertices are

randomly distributed in two-dimensional space with unit mean density and with one

vertex randomly designated as the root of the network. The inset of Fig. 4.10 shows

a network grown in this manner for α = 12. The network has a dendritic appearance,

with relatively straight trunk lines and short branches, bearing a superficial resem-

blance to diffusion-limited aggregation clusters, although they are based on entirely

different mechanisms.

In Fig. 4.10 we also plot the route factor q of the network and the average length

of an edge l̄ against α. As α is increased, the route factor does indeed go down in

this model, just as we expect. Furthermore, it decreases initially very sharply with α,

while at the same time l̄, which is proportional to the cost of building the network,

increases only slowly. Thus, it appears to be possible to grow networks that cost only

a little more than the optimal (α = 0) network, but which have far less circuitous

routes. This finding fits well with our observations of real distribution networks.
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Figure 4.10: Simulation results for the route factor q and average edge length l̄ as a function
of α for our first model with 10 000 vertices. The length scale is normalized by setting the
mean density equal to one. Inset: an example model network with α = 12.0. Colors indicate
the order in which edges were added to the network.

The transition from the rather amorphous shapes of a growing MST to a dendritic

pattern is best studied by looking at the arrangement of filled Voronoi cells. Fig. 4.11

shows the patterns for different values of α. Clearly, the shape becomes more centered

about the root (marked by the black square) and the holes become smaller and are

pushed towards the periphery of the network as α increases. Assuming that only the

filled Voronoi cells will be close enough to the network to attract human settlement,

our findings for α = 2.4 and α = 24 are consistent with Benguigui’s observation

that cities are more compact around their centers than around their periphery [155].

One way to quantify how much better the network fills the surrounding space is by

looking at the fractal dimension. Since the holes tend to move to the periphery, the

fractal dimension is not necessarily uniform everywhere, but we can obtain meaningful

results by measuring the fractal dimension only for the core region. We define the core

by first determining the maximum distance between the root and any point on the

perimeter, and then eliminating everything farther away from the root than half that
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Figure 4.11: Top: The filled Voronoi cells of networks for three different values of α. The
black square marks the position of the root. Bottom: The fractal dimension of the network
Dnetw and its perimeter Dper as a function of α measured in networks with 50, 000 vertices
each.

distance. The plot in Fig. 4.11 shows a smooth transition from a fractal dimension of

1.89 for the growing MST to the “trivial” value 2, indicating that the holes near the

root gradually shrink and disappear. This is different from the dendritic patterns of

diffusion-limited aggregation whose fractal dimension is only 1.71 [148].

The boundaries of the networks, on the other hand, remain complex geometric

objects even for large α. This is reflected by the fractal dimension of the external

perimeter whose value, although slightly decreasing, remains bigger than 1. Empirical

measurements of city borders from satellite images yield fractal dimensions between

1.25 and 1.38 [163] similar to what we find in our model.

While this is a pleasing result, another aspect of the model is quite unrealistic.

Some vertices, even ones lying quite close to the root, are joined to the network very
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late, because connecting them is costly in terms of the route factor. Arguably, the

real world does not work this way: one does not decide to leave parts of a city without

sewer service just because there is no convenient straight line for the sewer to take.

Instead, connections are presumably made to those vertices that can be connected

to the root by a reasonably short path, regardless of whether that path is straight.

In the case of trains, for instance, people will use a train service, and thereby justify

its construction, if their train journey is short in absolute terms, and are less likely

to take a longer journey even if the longer one is along a straight line. As we now

show, we can, by incorporating these considerations, produce a different model that

still generates highly efficient networks.

4.6 A network growth model with short connec-

tions to the root

Let us modify Eq. (4.5) to give preference to short paths regardless of their shape.

To do this, we write the weight of a new edge (i, j) as simply

w′
ij = dij + βlj0. (4.6)

This weight function is similar to the one studied by Fabrikant et al. [140], Eq. (4.2),

with the geometric distance lj0 replacing the graph distance hj0. However, unlike

Fabraikant et al., we assume here that the vertex positions are specified from the

outset, rather than being added to the network one by one. This corresponds to

a situation where sites available for settlement are determined from the beginning,

which we feel is appropriate for a model of urban networks since city ordinances

typically determine potential sites decades before they are finally developed.

Note that, unlike in Eq. (4.5), there is now no explicit term in Eq. (4.6) that

guarantees low route factors. Nonetheless, the model self-organizes to a state whose

route factor is small. Figure 4.12 shows results from simulations of this second model.
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Figure 4.12: Route factor q and average edge length l̄ as a function of β for our second
model and 10 000 vertices. Inset: an example model network with β = 0.4.

As the plot shows, the results are qualitatively quite similar to our first model: the

high value of q seen for β = 0 drops off quickly as β is increased, while the mean

edge length increases only slowly. Thus we can again choose a value for β that gives

behavior comparable with our real-world networks, having simultaneously low route

factor and low total cost of building the network. Values of q in the range 1.1 to 1.6

observed in the real-world networks are easily achieved.

When we look at the shape of the network itself, however, we get quite a different

impression (see Fig. 4.13). This model produces more symmetric networks that fill

space out to some approximately constant radius from the root, not unlike the clusters

produced by the Eden model. The second term in Eq. (4.6) makes it economically

disadvantageous to build connections to outlying areas before closer areas have been

connected. Thus, all vertices within a given distance of the root are served by the

network, without gaps, increasing the fractal dimension of the network quickly from

1.89 to 2 already for small β. However, unlike the dendritic shapes of Fig. 4.10,

the perimeter now becomes more circular and, hence, in the limit of large β, a one-
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Figure 4.13: Top: The filled Voronoi cells of networks for three different values of β and
50, 000 vertices. Bottom: Fractal dimensions.

dimensional object.

Radial growth in fact may be the secret of how low route factors are achieved in

reality. Our second model, unlike our first, does not explicitly aim to optimize the

route factor, but it does a creditable job nonetheless, precisely because it fills space

radially. The main trunk lines in the network are forced to be approximately straight

simply because the space to either side of them has already been filled and there is

nowhere else to go but outwards.

How can this be reconciled with the observation that real networks, and the towns

they serve, are dendritic in form? One might argue that it is primarily a consequence

of other factors, such as ribbon development along rivers or highways. In other words,

the initial distribution of vertices in real networks is usually non-uniform, unlike our

model. It is interesting to see therefore what happens if we apply our model to a

realistic scatter of points, and in Fig. 4.9b we have done this for the stations of the
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Figure 4.14: (a) Commuter rail network in the Boston area. (b) The model of Eq. (4.6)
applied to the same set of stations. The arrow marks the assumed root of the network.

Boston rail system. The figure shows the network generated by our second model

with β = 0.4 acting on the real-world positions of the stations. The result is, with

only a couple of exceptions, identical to the true rail network, with a comparable

route factor of 1.11 and total edge length 511km. This is a nontrivial result: our first

model, for example, does not reproduce the true network nearly so well for any value

of α.

4.7 Conclusion

In this chapter, we have studied models of growing spatial distribution networks

and compared our results with empirical data. After a review of previous models

of networks and fractal growth, we presented a growing version of the minimum

spanning tree which is closely related to invasion percolation. It keeps the cost in

terms of edge length at a minimum, which appears to be a plausible strategy at first

sight. However, in terms of the network distance between vertices, as measured by the

so-called route factor, this model is rather poor. Generally, short network length and

small route factor are at odds with one another, the first normally being decreased

only at the expense of an increase in the second. However, analyzing several real

spatial distribution and collection networks (pipelines, sewers and urban railroads),
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we found that the real world finds good compromise solutions giving nearly optimal

values of both network length and route factor. We have presented two models of

growing networks based on greedy optimization strategies that show how this might

occur. The first model produces networks of dendritic shape, the second model leads

to radial growth. A comparison between fractal dimensions in model and reality

gives some credibility to the first model. The second model, however, appears more

plausible from first principle; it also is more successful at reproducing actual network

structures on real point distributions.

Our focus was primarily on man-made networks, but it is plausible that our ar-

guments are applicable to biological networks as well, such as the circulatory sys-

tem [164, 165] or fungal mycels [166]. A more careful investigation, however, will be

left for future research.

Finally, a word of clarification directed towards readers skeptical of a physicist’s

tendency to model real networks with a few simple equations as done here. We are

well aware that the construction of a real network such as a commuter rail system

is based on many complicated decisions that cannot be captured by such a simple

approach. Certainly, the Massachusetts Bay Transportation Authority hired dozens

of civil engineers before even one mile of railroad track was put in place. We also

do not claim that the train network historically evolved exactly as our model would

predict, but, nevertheless, the final network is almost the same. Therefore, MBTA

could have saved much time and money and just followed our equations; the effect

would have been the same. This, indeed, might be of interest to bureaucrats in city

halls spending taxpayers’ money.
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CHAPTER V

OPTIMAL SPATIAL NETWORKS WITH

MULTIPLE SOURCES

5.1 Introduction

The previous chapter focused on spatial networks containing one special “root” node

which acted as the only sink or source in the network. Utility networks and urban

transit systems are often of this type, but many other networks are more complex.

Here we will investigate networks with multiple sinks and sources. The efficiency of

such networks can be measured in terms similar to those in Chap. IV. On one hand,

the smaller the sum of the lengths of all edges, the cheaper the network is to construct

and maintain. On the other hand, the shorter the effective distances between vertices

in the network, the faster the commodity can travel from point to point. These two

objectives generally oppose each other: A network with few and short connections

will not provide many direct and short links, while a network with all possible links

is usually prohibitively expensive to build. Hence, the problem we are dealing with

here is the following: Given n vertices and their positions in two-dimensional space,

find the network connecting all vertices that achieves the best compromise between

construction cost and convenience of traveling.

Previous literature on the optimum design of geographic networks presents slightly

different definitions of what the “best compromise” is. We illustrate our definition in

Sec. 5.2 where we also review earlier work on this issue. Regardless of the precise defi-

nition, finding the best network is a difficult optimization problem that can be solved
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exactly only for very small networks. In practice, one must rely on heuristic methods.

We present two possibilities, a simple greedy heuristic in Sec. 5.3.1, and a simulated

annealing algorithm in Sec. 5.3.2. Although both methods return similar results if

the user cost is proportional to the geometric distance traveled, simulated anneal-

ing performs considerably better if the cost is measured in terms of graph distance.

(See Fig. 4.3 for the distinction between geometric and graph distance). Networks

for these two cases are analyzed in detail in Sec. 5.4 and 5.5. Intermediate cases,

where both geometric and graph distance matter, are also possible—the Internet is

one important example—and are the subject of Sec. 5.7. In Sec. 5.8 we demonstrate

how solutions to the network design problem can be combined with solutions to the

p-median problem of Chap. III to create networks optimized for realistic population

distributions. Sec. 5.9 concludes this chapter with a brief summary.

5.2 The optimal network design problem

An early attempt at a spatial network design problem can be found in Kansky’s

1963 dissertation on transportation networks [85]. Taking the Sicilian railroad as an

example, he tries to reconstruct the network from first principles given the positions

of the railroad stations. In his solution, towns are ranked by wealth and edges are

inserted into the network one by one, preferentially connecting to wealthy towns and

preferentially establishing short links. The method, however, includes a number of

exceptions based on rather subjective decisions to prevent edges that are “unlikely”

or “not meaningful”. That the end result bears similarity with the real Sicilian

railroad network is hence not very surprising. (Growing networks with preferential

attachment have resurfaced in the literature recently, see Sec. 4.2, but not as solutions

to any specific optimization problem.)

Scott [12], labeling Kansky’s model as “rather diffident,” pursues a more rigorous

approach. In his model, efficiency depends on two quantities: the total length of all
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Figure 5.1: A simple illustrative network. Italic numbers refer to vertices, bold numbers
to Euclidean edge lengths. Since there is no edge between 1 and 3, the path of shortest
geometric distance between these two vertices is 1 ↔ 4 ↔ 3 which is slightly shorter than
1↔ 2↔ 3.

edges, T , and the sum of the shortest effective geometric distances in the network

between all pairs of vertices, Z. In Fig. 5.1, to take a simple example, the values for

T and Z are

T = l12 + l14 + l23 + l24 + l34 = 18 + 25 + 22 + 21 + 13 = 99, (5.1a)

Z = l12 + l13 + l14 + l23 + l24 + l34

= 18 + 38 + 25 + 22 + 21 + 13 = 137 (5.1b)

where lij is the geometric distance between vertices i and j. Introducing the n × n

adjacency matrix A whose elements are Aij = 1 if there is an edge between i and j,

and Aij = 0 otherwise, we can write more generally

T =
∑n

i=1

∑n
j=i+1 Aijlij , (5.2a)

Z =
∑n

i=1

∑n
j=i+1 lij , (5.2b)

where it is assumed that all distances satisfy the triangle inequality which is the

case here as well as throughout this chapter. If there is no path between i and j, we

formally set lij =∞.

In Scott’s formulation of the optimal network design problem, it is assumed that

the cost of the network is equal to T and that there is a fixed limit on the network
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Figure 5.2: Optimal networks according to Scott [12].

cost Tlim. We then search for the network structure that can be built within budget,

i.e. T < Tlim, and minimizes the mean vertex–vertex distance between all vertex pairs

∝ Z. Some small optimum networks constructed this way are shown in Fig. 5.2.

This definition is certainly reasonable, but Billheimer and Gray [129] argue that

the cost of a network is not only due to its construction, but also its use. Assuming

that there will be pij passengers traveling between vertices i and j, and that travel

costs are proportional to the distances traveled in the network, the total cost C will

be the construction cost T plus the travel cost thus

C = T + γ

n
∑

i=1

n
∑

j=i+1

lijpij. (5.3)

where γ is a non-negative parameter determining the relative weight of the second

term with respect to the first. If we can for simplicity assume that there are equally

many passengers traveling between all pairs i and j, we can, by redefining γ, simplify

the last equation to

C = T + γZ (5.4)

The optimum network from this point of view is the one minimizing this last equa-

tion. Unlike before, there is no fixed upper limit on T . Instead we aim at the best
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compromise between T and Z which depends on the value of γ. There is no direct

equivalence between the two definitions of optimal networks, but increasing Tlim in

the first definition has a similar effect as increasing γ in the second one. The larger

γ, the less weight is given to T in relative terms, and hence the larger T will become.

The main advantage of the definition by Billheimer and Gray is that we search the

optimum among all networks without any constraints, while in Scott’s definition the

constraint T < Tlim introduces some additional difficulty for numerical solutions.1

Several modifications of Eq. (5.3) are possible. The geometric distances lij in the

definition of Z, Eq. (5.2b), could for example be replaced by the graph distance hij

(see Fig. 4.3). We will study the implications of this change in Sec. 5.5. Other authors

have considered variable construction costs for different edges and variable user costs

per kilometer [129, 168, 167], finite capacities and congestion effects [128], and limiting

the possible networks to trees only [169]. However, these are considerations we will

not address in this work.

5.3 Generating near-optimal networks

5.3.1 A greedy algorithm

In principle, one way to find the optimum network is to first calculate Eq. (5.4) for all

possible networks containing the n given vertices and then determine the minimum

among all results. Unfortunately, since the number of networks we would have to

investigate is 2n(n−1)/2 and, hence, grows rapidly as a function of n, going through

every single network is impossible even for relatively small n. Some researchers have

proposed exact solution algorithms using clever, but quite intricate search strategies

that can reduce the number of explicit calculations [170, 171, 172]. However, their

1In fact, γ plays the role of a Lagrange multiplier for solving the original constrained problem,
see [167].
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performance is still not fast enough in practice.

The challenge appears in some sense similar to the p-median problem of Chap. III

where there was presumably no exact polynomial-time solution algorithm. Whether

the spatial network design problem is, like the p-median problem, NP-hard is not

known. Johnson et al. [173] proved NP-completeness for non-spatial networks with

arbitrary distances. (A problem is NP-complete if it belongs to NP and is NP-

hard.) Euclidean distances might simplify the problem, but in similar cases where

the non-geometric problem is NP-complete (e.g. the traveling salesman problem) the

constraints imposed by Euclidean space are too weak to reduce the complexity. Since

an efficient exact algorithm is at least far from obvious, it is reasonable to develop a

heuristic method for practical work.

One such method proposed by Billheimer and Gray [129], and later improved by

Los and Lardinois [168] is a simple greedy optimization strategy where at each step

one edge is deleted or added such that the network’s cost is reduced by as much as

currently possible. More precisely, the algorithm performs the following steps.

(1) Initialization: Begin with a full network, i.e. the network contains all

possible n(n− 1)/2 edges.

(2) Edge elimination phase: Calculate for each edge in turn how much the

total cost would change if that edge is eliminated from the current net-

work. Remove the edge that leads to the greatest reduction. Repeat this

procedure for the new network. If no improvement can be made, go to

(3).

(3) Edge insertion phase: Go through each pair of vertices in turn that are

not currently connected, and calculate how much the total cost could be

reduced by inserting an edge between them. Add the edge to the network

that leads to the greatest decrease and return to (2). If the cost cannot
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be improved, the algorithm terminates returning the current network as

the best solution.

This is a polynomial-time algorithm whose speed could in principle be improved

by some minor modifications (see [168]), but the major concern is whether it actually

finds near-optimal solutions. Although it is guaranteed that the solution cannot be

improved by one single edge insertion or deletion, the algorithm might get stuck in

a local minimum that is still considerably more expensive than the global minimum.

In Chap. III we raised the same objection against the steepest-descent method for

solving the p-median problem, and, like there, we deal with this concern by developing

a different heuristic based on simulated annealing which we will now present.

5.3.2 Simulated annealing

The implementation of a simulated annealing (SA) method for the optimal network

design problem is similar to the procedure laid out in Sec. 3.3. We repeatedly generate

new network configurations and accept them according to the Metropolis criterion

acceptance probability =















exp[−β(Cnew − Cold)] if Cnew > Cold,

1 otherwise,

(5.5)

where Cold and Cnew are the network costs before and after the reconfiguration, and

β is a positive parameter which increases after every iteration.

We use two different methods to randomly create a new network configuration

from the previous one; the first one changes the number of edges, whereas the second

one keeps it constant. The first method is the random insertion or deletion of one

edge (see Fig. 5.3a). We randomly choose two vertices and, if there is an edge between

these two, we remove this edge from the network, otherwise we add an edge between

them. The rest of the network remains unchanged. This move set is ergodic, i.e. we

can in principle reach every possible network, in particular the optimal one, from any
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Figure 5.3: The random network reconfigurations used in the simulated annealing Markov
chain. (a) Random edge insertion and deletion: Two vertices i and j are randomly chosen.
If there is an edge between i and j, this edge is removed. Otherwise the edge i ↔ j is
added. (b) Random rewiring of one edge: The random edge i ↔ j is deleted and instead
the edge i↔ k added.

initial condition with a finite number of edge insertions or deletions. However, we

found that the time to reach the optimum, is much reduced if we also allow a second

type of elementary move (Fig. 5.3b). There we first randomly choose one of the edges,

i↔ j, and one of its endpoints, for example i. Then, one vertex k not adjacent to i

is randomly chosen, and the edge i↔ j replaced by i↔ k.

Most time is spent, here as well as in the greedy algorithm, on the calculation of

the new network cost Cnew. The shortest path lengths lij in the network, needed

in Eq. (5.2), are most quickly calculated using Dijkstra’s algorithm which needs

O(mn log n) time where m is the number of edges and n the number of vertices

in the network [43]. In an efficient implementation, however, one should avoid ap-

plying Dijkstra’s algorithm over and over again after each reconfiguration. In fact,

it only needs to be applied once to the initial network, and, because we only change

one or two edges at a time, we can instead use the dynamic graph algorithm by

Ramalingam and Reps [174] for all following iterations which avoids the complete re-

calculation of all distances. The Ramalingam-Reps algorithm is typically much faster

than Dijkstra’s algorithm, even though it has the same worst-case complexity.

We found that a good initial value of β in Eq. (5.5) is 0.1/CMST , where CMST

is the cost of the minimum spanning tree. After each iteration we increase β by a

factor 1+3 ·10−6 to slowly lower the probability of a cost increase. If 106 consecutive
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iterations do not alter the network, we consider it as sufficiently optimized. We have

chosen these parameters since neither lowering the initial value of β nor slowing down

its subsequent increase had a measurable effect on the quality of the returned results.

To compare SA with the greedy algorithm, we have calculated a number of exam-

ples for randomly generated vertex positions and various values of γ in Eq. (5.4). For

most of this chapter we place n vertices randomly in a square of side length 2
√

n and

impose periodic boundary conditions, i.e. a line leaving the square at the top enters

the square again at the bottom, and similarly a line at the left end reappears on the

right. With this particular choice of the side length, the average Euclidean “crow flies”

distance between a vertex and its nearest neighbor is equal to one, independently of

n, and the periodic boundary conditions reduce finite-size effects.

The results of our comparison are summarized in Tab. 5.1. For n = 7, both

algorithms are about equally reliable: SA found the global optimum in all cases, the

greedy algorithm in all but one. For n = 50, the global optimum cannot be explicitly

calculated—the number of vertices is simply too big—but we can still say that SA is

always at least as good as the greedy algorithm, typically beating it by a few tenths

of a percent. This may not seem very impressive, but we will see in Sec. 5.5 that

SA outperforms the greedy algorithm by wider margins if the geometric distance lij

in Eq. (5.2b) is replaced by the graph distance hij. Although we will focus on the

geometric distance in the following section, we will nevertheless use the slightly better

SA algorithm for numerical calculations.
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n = 7 γ = 0.4 γ = 1.0 γ = 2.0 γ = 4.0 γ = 10.0
greedy alg.finds global minimum 9/10 10/10 10/10 10/10 10/10

SA finds global minimum 10/10 10/10 10/10 10/10 10/10

n = 50 γ = 0.002γ = 0.006 γ = 0.02 γ = 0.06 γ = 0.2
SA better than greedy alg. 9 10 10 9 5

SA equal to greedy alg. 1 0 0 1 5
SA worse than greedy alg. 0 0 0 0 0

greedy alg. bigger on avg. (%) 0.9 0.6 0.6 0.2 0.0
Maximum Difference (%) 2.0 2.0 0.9 0.4 0.1

Table 5.1: Comparison of SA and the greedy algorithm for n = 7 and n = 50 vertices. For
each value of gamma, 10 experiments were carried out.

5.4 Varying the cost per kilometer

The shape of an optimally designed network depends on the parameter γ in Eq. (5.4)

which measures the weight given to the user’s travel cost Z in comparison to the

construction cost T . For two limiting cases the solutions are immediately clear. If

γ → 0, the optimal network is the minimum spanning tree since this is the cheapest

network to build. If γ →∞, construction costs play no role, so that the optimum is

a full network with all possible n(n− 1)/2 edges. Between these limits, the optimum

is less obvious, because, as we saw in Chap. IV, the MST is a poor solution as far as

the traveled distance Z is concerned, and the full network is poor in terms of network

length T .

To investigate what compromise between these extremes is best, we have con-

structed near-optimal networks for various values of γ with n = 200 vertices. A

series of networks generated in this fashion is shown in Fig. 5.4. For γ = 0.0002,

the optimum network is almost identical to the MST. As γ increases, the number of

edges goes up, but for γ = 0.002 and 0.02, vertices still predominantly have links to

vertices in the immediate neighborhood. Only for γ = 0.2 we find edges spanning

longer distances.

We measured the efficiency of the networks in terms of T and Z as functions
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Figure 5.4: Near-optimal networks in terms of the total cost C with n = 200 vertices for
different values of γ.

of γ. The result, plotted in Fig. 5.5, shows that T is a monotonically increasing

and Z a monotonically decreasing function. Roughly speaking, two regimes can be

distinguished. For small γ, T stays almost constant near its minimum value, whereas

Z decreases rapidly. For large γ, the roles are reversed: Z does no longer decrease

much, but T grows quickly.

The network length T is the product of two factors: the number of edges m and

the average edge length l̄. It is instructive to analyze how these two factors contribute

separately to the increase in T in Fig. 5.5. In the upper panel of Fig. 5.6 we plot

the average degree k̄ = 2m/n ∝ m as well as the maximum degree kmax against γ.

Both increase only very slowly for small γ, but more quickly for larger γ. The lower
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Figure 5.5: Construction cost T and user cost Z as functions of γ for n = 200 vertices.

panel shows the average and maximum edge length l̄ and lmax. Here the growth in

both is also more rapid for large γ, but lmax begins to grow noticeably sooner. Hence,

the increase in T is caused both by an increase in the number of edges and their

length. The average degree increases more strongly than the average length, but the

maximum length grows more quickly than the maximum degree.
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Figure 5.6: Contributions to the construction cost T in Fig. 5.5. Upper panel: Maximum
degree kmax and average degree k̄. Lower panel: Maximum edge length lmax and average
edge length l̄.

5.5 Networks with fixed cost per traversed edge

So far, we have assumed that user costs are proportional to geometric distances be-

tween vertices which is a plausible starting point. In a road network, for example,

the quickest and cheapest route is usually not very different from the shortest route

measured in kilometers. However, in some networks, users might have different pref-

erences. In an airline network, for example, passengers often spend much time waiting

for connecting flights, so that they care more about the number of stopovers than

about the kilometers traveled. The appropriate modification of our model for a situ-

ation, where the delays occur at the vertices rather than between them, is to replace

the geometric distance lij in Eq. (5.2b) by the number of legs in a journey, which is

the graph distance hij , thus

Z ′ =

n
∑

i=1

n
∑

j=i+1

hij. (5.6)
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n = 7 γ = 0.1 γ = 0.2 γ = 0.5 γ = 1.1 γ = 2.1

greedy alg.
finds global minimum 6/10 3/10 3/10 1/10 6/10
Avg. Difference (%) 0.6 2.1 2.4 1.8 0.1
Max. Difference (%) 2.1 8.9 7.4 4.0 0.5

SA
finds global minimum 9/10 9/10 8/10 7/10 8/10
Avg. Difference (%) 0.1 0.1 0.1 0.3 0.1
Max. Difference (%) 0.6 1.1 0.3 2.1 0.1

n = 50 γ = 0.0008γ = 0.003γ = 0.008 γ = 0.03 γ = 0.08
SA better than greedy alg. 7 9 10 10 10

SA equal to greedy alg. 0 0 0 0 0
SA worse than greedy alg. 3 1 0 0 0

greedy alg. bigger on avg. (%) 0.2 1.6 6.7 9.3 5.0
Maximum Difference (%) 0.7 4.3 9.1 13.9 6.9

Table 5.2: Comparison of SA and the greedy algorithm for n = 7 and n = 50 vertices where
Z has been replaced by Z ′ of Eq. (5.6). For each value of γ, 10 experiments were carried
out.

The total cost C ′ is then, as before, the sum of construction and travel cost, hence

C ′ = T + γZ ′, γ > 0, (5.7)

and the optimum network is the one minimizing C ′.

Unfortunately, replacing the geometric distance by the graph distance does not

seem to reduce the complexity of the optimization problem, but both the greedy and

simulated annealing heuristics presented in Sec. 5.3 can be easily modified. We have

tested both modified algorithms and have summarized our findings in Tab. 5.2. Both

algorithms are less successful for n = 7 than their counterparts in Tab. 5.2, but SA still

finds the global optimum in the majority of all cases unlike the greedy algorithm, and

even where it does not find the optimum, its results are still better, both on average

and in the worst case. For larger networks with n = 50, exact solutions cannot be

computed on a human time scale, but comparing the results of both heuristics, SA

outperforms the greedy algorithm by sometimes more than 10%. We will therefore

rely on SA in the following calculations, although improvements are certainly still

possible.
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Figure 5.7: Near-optimal networks in terms of C ′ with n = 200 vertices for different values
of γ.

In Fig. 5.7 we show a series of near-optimal networks obtained with SA for four

different values of γ. For γ = 0.0002, the network is similar to the MST. Even for

larger values, the networks remain trees, so the number of edges, unlike in Fig. 5.4,

hardly increases. Instead, a small number of highly connected vertices appears which,

like hubs in an airline network, collect most of the traffic from vertices in the vicinity.

For γ = 0.2 the network finally turns into a “star graph” where one vertex connects

to all other vertices.

The measures of efficiency for this model, T and Z ′, are plotted against γ in

Fig. 5.8. Z ′ is a well-behaved monotonically decreasing function, similar to Z in

Fig. 5.5, and asymptotically approaches the limiting value n(n− 1). T , by contrast,
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Figure 5.8: Construction cost T and user cost Z ′ as functions of γ for n = 200 vertices

is a more complicated function. It increases monotonically, but the slope changes

suddenly from a high value to almost zero near γ ≈ 0.08.

What causes this sharp bend? We can gain more insight by splitting T , as we did

before, into two factors: the number of edges m and the average edge length l̄. There

is nothing directly suspicious about m as a function of γ (see upper panel of Fig. 5.9),

but the maximum degree kmax shows a peculiar behavior near γ ≈ 0.08. At this point

kmax reaches the highest possible degree in a network with n vertices, n − 1. Since

m, on the other hand, is still at its minimum value n − 1, we can conclude that the

sudden change in the slope of T is related to the emergence of star graphs as optimal

networks. (Some authors have referred to similar network phenomena as “gelation”

in analogy with condensed matter physics [175, 176].)

Since m is well-behaved throughout, the bend in T must be caused by l̄ as the

lower panel of Fig. 5.9 confirms: l̄ grows from approximately 1 for γ → 0 to 1
3
(
√

2 +

log(
√

2 + 1))
√

n ≈ 0.765
√

n, the average edge length in a star graph, at γ ≈ 0.08

with an increasingly steep slope. At this point the slope suddenly drops to zero, and

l̄ even starts decreasing. This happens because every edge that is added to a star
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Figure 5.9: Contributions to the construction cost T in Fig. 5.8. Upper panel: Maximum
degree kmax and average degree k̄. Lower panel: Maximum edge length lmax and average
edge length l̄.

graph has the same effect on Z ′—it only reduces the graph distance between the two

endpoints, and it only reduces it by one—so that there is no point in inserting any

long edges. If we add more edges at all, they would have to be short, thus decreasing

the average edge length l̄. This also explains why the maximum edge length lmax,

which has grown steadily below γ ≈ 0.08, stays almost constant above the transition.

5.6 The traffic in optimal networks

A quantity of practical interest in networks is the amount of traffic along the edges.

The definitions of Z and Z ′, Eq. (5.2b) and (5.6), imply three assumptions. First,

there is an equal demand for traveling between all origin-destination pairs. Second, all

edges have infinite capacities, so that there are no delays due to congestion. Third, all

the traffic is along the shortest paths in the network, either measured by geometric or

graph distance; in other words, users do not take intentional detours. The situation in

real networks is, of course, more complicated, but these assumptions keep the already
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Figure 5.10: Edge betweenness for the simple network of Fig. 5.1. For every pair of vertices,
we send one unit of flow along the shortest geometric path between them. The amount of
flow is indicated by bold numbers on the edges. The distances are given in Fig. 5.1. Note
that the shortest geometric path from 1 to 3 is via 4. Adding the flow along each edge yields
the “edge betweenness”. In this example, the edges 1 ↔ 4 and 3 ↔ 4 have a betweenness
of 2, all other edges a betweenness of 1. We could have also used graph distance instead of
geometric distance, which amounts to setting all distances equal to one, but this generally
gives different results. In terms of graph distance, there are, for example, two shortest paths
between vertices 1 and 3, namely via 2 and via 4. Both paths would contribute one half
unit of flow to the edge betweenness.

difficult network optimization problem more tractable.2

An appropriate way to measure traffic flow under these assumptions is a gener-

alization of the “edge betweenness” [178]: We send one unit of flow between every

possible origin-destination pair along the shortest path and count the number of units

that have passed through one particular edge. Equivalently, the edge betweenness is

the number of shortest paths in the network running along that edge. A sample cal-

culation is shown in Fig. 5.10. In the networks of Fig. 5.4 and 5.7, we have indicated

a higher edge betweenness with a larger line width.

For the models of Sec. 5.4 and 5.5, we have measured the betweennesses of all

edges for several values of γ. In Fig. 5.11, we plot the cumulative distributions, i.e.

2Traffic assignments in networks with limited capacities can be counter-intuitive. Braess’ paradox,
for example, implies that under certain conditions the flow in the network is improved by removing(!)
edges [177].
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Figure 5.11: Cumulative edge betweenness distributions. (a) Distributions for networks
minimizing the total cost C of Eq. (5.4), where the user costs depend on geometric distances.
(b) Distributions for networks minimizing the total cost C ′ of Eq. (5.7), where the user costs
depend on graph distances.

the fraction of the edges in the network whose betweenness is larger than a certain

value b. Fig. 5.11a shows the result for the first model where the user cost Z depends

on the geometric distances; Fig. 5.11b is for the second model whose user cost Z ′

depends on graph distances. For γ → 0, where the optimal networks are MSTs,

both models possess a long-stretched tail indicating that in this case some edges, like

main arteries, have to support a large portion of the flow in the network. If such an

edge fails, for example because of construction or because it cannot handle that much

traffic, many routes in the network will be affected.

The distributions for both models become narrower as γ increases. The effect,

however, is much stronger in the first than in the second model. For γ = 0.02, for

example, no edge in the first model has a betweenness larger than 1200, whereas in

the second model the maximum is around 3300. The difference is closely related to

the different network structures. The second model, unlike the first, possesses a small

number of highly connected hubs (see Fig. 5.7). These hubs collect most of the traffic

and, since the networks are trees, the traffic must inevitably pass through the few

edges between the hubs which explains their high betweenness. Networks generated

by the first model, on the other hand, have no hubs but more edges (see Fig. 5.4) so
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that the maximum betweenness is smaller.

Towards the left-hand side most curves in Fig. 5.11 have jumps at b = n−1. These

jumps are present if a large fraction of the vertices have a degree of one because these

vertices can only be reached along one edge, so that traffic from all other n−1 vertices

must go through that edge. Since the second model leads to increasingly many such

“dead ends” as γ grows, the jumps in Fig. 5.11b become bigger. However, a smaller

betweenness than n−1 is possible as the orange curve in Fig. 5.11a proves: For γ →∞

the optimal networks contain all n(n − 1)/2 possible edges, hence all betweennesses

in this limit are equal to one.

5.7 Balancing geometric and graph distance

Generally, a network will be the better the shorter the paths between points are,

but the way we measure path length can vary. In Sec. 5.4, we used geometric, in

Sec. 5.5 graph distance. However, in some networks, a compromise between these

two is desired. One example is the Internet, by which we mean the physical network

of computers and routers connected mostly by optical fiber. The total time required

for an Internet packet to reach its destination depends on two limiting factors: the

propagation delay, i.e. the time needed to traverse the physical distance between

vertices (computers and routers) at the speed of light in optical fiber, and store and

forward delays, i.e. the time it takes the vertices along the path to receive, process,

and resend the packets. The propagation delay is proportional to the geometric path

length; store and forward delays, on the other hand, depend on the number of routers

along the way. Empirically, both types of delays are more or less equal.3

3This can be easily verified with the UNIX ping utility. Pinging, for example, several Internet
addresses in San Diego, CA, from Ann Arbor, MI, we found round trip times of around 80 ms. The
propagation delay for the 6320 km long distance is easily calculated from the speed of light in optical
fiber (≈ 2 · 108 m/s) to be 32 ms (plus some additional delay due to the route factor), so it accounts
for around one third of the total delay.
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To account for such intermediate situations, we assign to each edge an effective

length

l̃ij = (1− δ)lij + δ (5.8)

with 0 ≤ δ ≤ 1. The parameter δ determines the user’s preference for measuring

distance in terms of kilometers or legs. Now we define the effective distance between

two (not necessarily adjacent) vertices to be the sum of the effective lengths of all

edges along a path between them, minimized over all paths. The total user cost is

then proportional to the sum of all effective path lengths

Zδ =
n

∑

i=1

n
∑

j=i+1

l̃ij (5.9)

and the optimum network for given γ and δ is the one that minimizes the total cost

Cδ = T + γZδ. (5.10)

Obviously, Z0 = Z and Z1 = Z ′, so that our previous results are limiting cases of this

more general problem.

In Fig. 5.12 we show networks obtained by varying δ and keeping γ = 0.06 fixed.

The structures of Fig. 5.12(a) and (d) are familiar from before (see Fig. 5.7 and

5.4)—structures with many loops but neither long edges nor hubs in the first case

and tree-like structures with long edges and hubs in the second case. For intermediate

values of δ, the networks find compromises between hub formation and local links.

We use three quantities to characterize the transition between the two limiting

cases: the maximum degree, the average geometric distance along the shortest path,

and the average number of edges along that path.4 The results are plotted against

4Note that the shortest path between two vertices is the one whose effective length, given by
Eq. 5.8, is minimal. Since that path generally neither minimizes the geometric nor the graph
distance, the average of the geometric distances (or number of edges) along the shortest paths is not

equal to the average of the shortest geometric (or graph) distance.
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Figure 5.12: Near-optimal networks in terms of Cδ with n = 200 vertices. γ is kept constant
at 0.06.

δ in Fig. 5.13. The maximum degree and average geometric distance increase only

slowly near δ = 0, but grow rapidly near δ = 1. The number of edges along the

shortest path, on the other hand, decreases steadily. Reducing the number of legs in

a journey by accepting a higher mileage is hence not a linear trade-off. Optimizing

the graph distance implies disproportionately long journeys in terms of geometric

distance, since even paths between nearby vertices must take the (geometrically) long

detour via at least one hub.
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Figure 5.13: Network properties for n = 200 vertices and γ = 0.06 as functions of δ. Top:
Maximum degree. Middle: Average geometric distance along the shortest path. Bottom:
Average number of vertices along the shortest path.

5.8 Networks with optimally located facilities

Until now, all of our calculations were based on spatially random vertex distributions,

but in many practical applications placing vertices randomly in space is a poor choice.

Often the vertices are meant to serve the public at large like airports or train stations.

In that case a more reasonable choice is to place the vertices such that the mean

distance to the nearest vertex for members of the population is minimal. Such a

vertex distribution is a solution to the p-median problem for which we have developed

a heuristic solution method in Chap. III. It is therefore interesting to apply the

network optimization algorithm of Sec. 5.3.2 to a thus optimized spatial distribution

of facilities rather than the random distributions we have used so far.

Using the conterminous United States as a concrete example, we first determine

a near-optimal placement of n = 200 facilities based on the population density in the
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year 2000. We then wish to find networks connecting these facilities and optimizing

T + γ
n

∑

i=1

n
∑

j=i+1

[(1− δ)lij + δ]pij. (5.11)

Here we have made two changes compared to Eq. 5.4. First, we returned to the more

general expression of Eq. 5.3, where we did not assume that the amount of traffic pij

between the vertices i and j is the same for all pairs of vertices. Second, we replaced

the geometric length lij by l̃ij of Eq. (5.8). The second change allows us to take

different user preferences for measuring distance into account. The first change can

be motivated as follows.

Since the population density ρ is highly non-uniform, and more densely populated

regions generate more traffic, we should not assume that the demand for traveling

is the same between all vertices. Vertex i serves the population in the surrounding

Voronoi cell Vi, and therefore, the fraction of the population using that vertex is

Pi =

∫

Vi
ρ(r) d2r

∑n
k=1

∫

Vk
ρ(r) d2r

. (5.12)

Clearly, the demand for traffic between i and j should grow with Pi and Pj. The

simplest functional relation between traffic and population that satisfies this condition

is pij = PiPj . Other functional forms are of course possible and worth investigating,

but here we have for simplicity exclusively used this assumption.

Optimized networks for four different values of δ are shown in Fig. 5.14. We have,

as we did earlier, normalized the length scale such that the average nearest-neighbor

“crow flies” distance between the vertices is equal to one. Using this length scale, we

have set γ = 800 for this calculation. For δ = 0.0, where the user only cares about the

kilometers traveled, the network consists of mostly local connections between nearby

vertices. The density of the vertices is higher and the edge lengths are shorter in

regions of higher population density. Consequently, the network is particularly dense

in the northeast, but sparse in the western half of the United States.
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Figure 5.14: Optimal networks for the population distribution of the United States with
n = 200 vertices for different values of δ.

By increasing δ, the number of legs starts playing a more important role, and the

networks increasingly tend to form hubs. At δ = 0.5, a compromise between short

edges and several smaller hubs is reached, while at δ = 0.8 hubs in Philadelphia,

Columbus, Chicago, Kansas City, and Atlanta handle the bulk of the traffic. On

the highly populated Californian coast, two smaller hubs near San Francisco and Los

Angeles are visible.

In the extreme case δ = 1.0, where the user does not care about mileage at all, but

only about the number of legs, the hubs in the eastern half of the country condense

to one central hub near Cincinnati. Similarly, California is now served by only one

hub in Los Angeles. Since the edge between Los Angeles and Cincinnati is the only

available route from California to the rest of the country, it carries by far the greatest

amount of traffic in the network.
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Combining solutions to the p-median problem with solutions to the network design

problem in the manner presented here should be useful in many situations of practical

interest such as the design of transportation networks5, parcel delivery services, and

the Internet backbone.

5.9 Conclusion

This chapter has treated a problem of optimal spatial network design if multiple

sources are responsible for the flow in the network. The problem consists of finding

the minimum of the sum of the construction cost and the cost to the user. We

have assumed that the construction cost is equal to the total length of all edges in

the network and that the user cost depends on the distances traveled between the

vertices along the edges. Different kinds of distances might be relevant for the user:

Geometric distance (in kilometers), graph distance (number of legs), or a combination

of both.

Regardless what distance is considered, determining the optimal network is a

difficult optimization problem for which only heuristic methods are available. We

have compared a simple greedy algorithm with a simulated annealing method. For

geometric distances, both algorithms give comparable results, but for graph distances,

simulated annealing performs considerably better.

We have studied how the network structure changes if the user cost receives in-

creasingly more weight than the construction cost. If shortest paths are measured in

terms of geometric distance, the structure undergoes a smooth transition from min-

imum spanning tree to fully connected network by adding more and preferentially

5It is certainly no coincidence that many of the hubs in Fig. 5.14 coincide with hubs operated
by major national airlines. In 2005, Atlanta and Cincinatti are Delta Airlines’ main hubs. Chicago,
Denver, Los Angeles, and San Francisco are hubs for United Airlines, whereas American Airlines
uses hubs in Chicago, Dallas, and Los Angeles.
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short edges. If graph distance is used, the network first becomes a star graph, i.e.

all vertices connect to one central hub, and only then more edges are added. For

mixed distances, intermediate solutions between short edges and hub formation are

obtained. We ended with an application of the network design problem to the real

geography of the United States by placing vertices such that the mean distance to the

nearest vertex for members of the population is minimal. This method to calculate

optimal geometric networks for actual population distributions is of potential use for

real design problems.
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CHAPTER VI

CONCLUSION

In this dissertation, we have studied several applications of statistical physics to

geographic problems.

In Chap. II, we have presented an algorithm to create cartograms, i.e. maps in

which the sizes of geographic regions appear in proportion to their population or some

other analogous property. Such maps are invaluable for the representation of census

results, election returns, disease incidence, and many other kinds of human data. Un-

fortunately, in order to scale regions and still have them fit together, one is normally

forced to distort the regions’ shapes, potentially resulting in maps that are difficult

to read. Many methods for making cartograms have been proposed, some of them

extremely complex, but all suffer either from this lack of readability or from other

pathologies, like overlapping regions or strong dependence on the choice of coordinate

axes. Here we have presented a new technique based on the linear diffusion equa-

tion that suffers none of these drawbacks. Our method is conceptually simple and

produces useful, elegant, and easily readable maps. We have illustrated the method

with applications to lung cancer cases in the State of New York, homicides in Cali-

fornia, Autonomous Systems in the Internet, the results of the 2004 US presidential

election, energy consumption and production, and the geographical distribution of

stories appearing in the news.

In Chap. III, we have studied the p-median problem for a non-uniform popula-

tion density which consists of finding the optimal positions of p service facilities in
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geographic space such that the mean distance between a member of the population

and the nearest facility is minimal. We have introduced a heuristic based on simu-

lated annealing which improves the results of a simple steepest-descent optimization.

Analytic calculations indicate that, if facilities are distributed optimally for the given

population distribution, their density increases with population density, but does so

slower than linearly, as the two-thirds power. Numerical calculations based on the

density-equalizing projection of Chap. II confirm this result. Although real facili-

ties do not appear to strictly follow a two-thirds power law, the p-median problem

provides a starting point for many actual facility location problems.

While Chap. II and III have dealt with distributions of isolated points in geo-

graphic space, Chap. IV and V have focused on networks where the points are con-

nected by lines. In Chap. IV, we have analyzed spatial distribution networks growing

from an initial “root” node which is the only source or sink of the commodity dis-

tributed in the network. The efficiency depends on two properties. First, the network

should have short paths from each point to the root, ideally not much longer than

the “crow flies” distance between the same two points. Second, the sum of the length

of all connections in the network should be low so that the network is economical to

build and maintain. These two criteria cannot be optimized simultaneously, the first

being improved only at the expense of the second and vice versa, but real networks

nevertheless are nearly optimal in both respects. We have suggested two models of

growing networks to explain how this situation might occur.

Chap. V looks at the problem of finding optimal networks if there are multiple

sinks and sources. Although it is difficult to find globally optimal solutions, we can

derive nearly optimal networks using simulated annealing. We have characterized

networks optimized for different user preferences and distance metrics in terms of

their efficiency and traffic distribution. If we know the population density to be

served by the network, the p-median problem can be solved for the point locations
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and an optimal network can be derived for these points. Results for the population

of the United States have been presented.

We believe that the problems studied here are of practical relevance, and we hope

that this dissertation contributes to a better understanding of the laws governing the

distribution of points and networks in geographic space.
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APPENDIX A

HOPKINS STATISTIC - A METHOD TO TEST

SPATIAL POINT PATTERNS FOR

RANDOMNESS

In physics, geography, and biology, data is often in the form of points that are,

more or less, randomly distributed within some region of two- or three-dimensional

space. Examples include occurrences of a disease, locations of trees in a forest, the

arrangement of cell nuclei in tissue, or the positions of galaxies in the universe. Three

examples of spatial point patterns, reproduced from [13], are shown in Fig. A.1.

Panel (a) shows the locations of 65 Japanese black pine saplings in a square of side

5.7 m [179], panel (b) the locations of 62 redwood seedlings in a square of side 23

m [180, 181], and panel (c) the pattern formed by the centers of mass of 42 cells from

insect tissue [182, 181].

The mechanisms behind these three patterns are clearly distinct. In Fig. A.1(a)

the points appear to be randomly scattered. Every sapling seems equally likely to

grow everywhere in the square. In particular, there is no obvious dependence of the

position of one sapling on the positions of the other saplings. Fig. A.1(b), on the

other hand, shows strong “clustering” or “aggregation” in the sense that it is more

likely to find a redwood seedling in the immediate neighborhood of another one. A

possible explanation for this clustering is that the seedlings preferentially grow around

redwood stumps whose positions are not recorded, but might be inferred from the

data. The pattern in Fig. A.1(c), by contrast, shows no such clusters. The points
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(a) (b) (c)

Figure A.1: Three different point patterns. (a) Locations of 65 Japanese black pine saplings
in a square of side 5.7 m. (b) Locations of 62 redwood seedlings in a square of side 23 m.
(c) Locations of 42 insect cell centers. Reproduced from [13].

appear more evenly distributed than in (a) and (b), with all cell centers relatively far

away from their nearest neighbors. Such a “regular” distribution is likely to be the

result of repulsion or competition between different points.

In Fig. A.1(b) and (c) the deviations from pure randomness are clearly visible

to the eye. In many cases, however, the difference between a random, aggregated,

or regular distribution will be more subtle, so we would wish to develop a simple

method to characterize the type of distribution and, if possible, state in some way

how confident we are with our classification. Several such methods exist, and some are

quite sophisticated, see [183, 13]. However, here we describe a simple and elementary

one due to Hopkins [184] which gives quite good results (see [185, 186] for a comparison

with other methods), and we concentrate on the case where the sampling region is

two-dimensional.

Following Diggle’s nomenclature [13], we call the points that constitute the pattern

we wish to analyze (e.g. saplings, seedlings and cell centers in Fig. A.1) events to

distinguish them from other arbitrary points. A stochastic process generating events

in an area A is called completely spatially random with density λ if

(i) the number of events N(B) in any region B ⊂ A with area |B|, is Poisson-

distributed with mean λ|B| and
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(ii) the number of events in disjoint sets are independent.

Let us assume that A is very large and non-pathologically shaped so that we can

neglect finite-size effects. The probability to find at least one other event within a

circle of radius r around one randomly selected event in a completely spatially random

distribution is then, according to property (i),

P (N(πr2) > 0) = 1− exp(−λπr2). (A.1)

The probability density function for the distance r to the nearest neighbor is the

derivative,

p(r) =
d

dr
P (N(πr2) > 0) = 2λπr exp(−λπr2), (A.2)

or, if we work with the quantity a = λπr2 to simplify notation,

p(a) = p(r)
dr

da
= exp(−a). (A.3)

Hence, a is exponentially distributed.

An important consequence of complete spatial randomness (CSR) is that, instead

of choosing one event at random, we can choose any point in A, even one that is

not an event, and, without any change in the arguments above, we obtain the same

probability distribution p(a) for the distance between that point and the nearest event.

For clustered point patterns, on the other hand, an event will typically be closer to the

nearest neighbor than a random point would be to the nearest event, since a randomly

chosen event is more likely to be within a cluster of other events (see Fig. A.1(b)).

The opposite is true for regular point patterns. There, the distance between one

event and the nearest other event will typically be larger than the distance between

a random point and its nearest event because events tend to “repel” each other (see

Fig. A.1(c)).

This observation is the basis of Hopkins’ test for CSR. We choose n events ran-

domly, measure the distances r1, r2, ..., rn to the nearest neighboring event for each
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case, compute ai = λπr2
i , i = 1, 2, ..., n, and add the results,

Xevent =
n

∑

i=1

ai. (A.4)

Then we choose n random points, measure again the distances ρ1, ρ2, ..., ρn to the

nearest event, compute αi = λπρ2
i , i = 1, 2, ..., n, and calculate their sum,

Xpoint =
n

∑

i=1

αi. (A.5)

If the events are at completely spatially random positions, then Xevent and Xpoint

are two independent and identically distributed random variables, so that for large

enough n they are expected to give essentially the same result. However, if Xevent is

significantly smaller than Xpoint, the point pattern is likely to be aggregated; in the

opposite case we would suspect that the pattern is regular.

Whether we accept the null hypothesis of CSR will depend on Xevent and Xpoint

as well as n. We will prove that, for CSR, Xevent and Xpoint are gamma-distributed,

and the so-called Hopkins statistic,

H =
Xpoint

Xpoint + Xevent
, (A.6)

is beta-distributed with parameters depending on n, allowing us to judge the validity

of the null hypothesis. To derive these results, let us first review some important

properties of the beta and gamma distributions.

The gamma distribution with parameters µ and ν has the probability density

function

pµ,ν(x) =
1

Γ(µ)νµ
xµ−1 exp

(

−x

ν

)

, (A.7)

and the beta distribution with parameter σ and τ is defined by

pσ,τ (x) =
1

B(σ, τ)
xσ−1(1− x)τ−1. (A.8)

Let X1 and X2 be independent gamma-distributed random variables with parameters
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(µ1, ν) and (µ2, ν) respectively. Then their sum X1 + X2 is gamma-distributed with

parameters (µ1+µ2, ν), and X1

X1+X2

is beta-distributed with parameters (µ1, µ2). This

can be proved with a simple variable transformation

u = x1 + x2, (A.9a)

v =
x1

x1 + x2
, (A.9b)

whose Jacobian is

∂(x1, x2)

∂(u, v)
= −u. (A.10)

The joint probability density of X1 + X2 and X1

X1+X2

in terms of u and v is hence

p(u, v) = p(x1, x2)

∣

∣

∣

∣

∂(x1, x2)

∂(u, v)

∣

∣

∣

∣

=
1

Γ(µ1)Γ(µ2)νµ1+µ2

uµ1+µ2−1 exp

(

−u

ν

)

vµ1−1(1−v)µ2−1.

(A.11)

The probability density for X1 + X2 alone follows by integrating over v,

pX1+X2
(u) =

1

Γ(µ1)Γ(µ2)νµ1+µ2

uµ1+µ2−1B(µ1, µ2) exp

(

−u

ν

)

, (A.12)

and that for X1

X1+X2

by integrating over u,

pX1/(X1+X2) =
1

Γ(µ1)Γ(µ2)νµ1+µ2

Γ(µ1 + µ2)v
µ1−1(1− v)µ2−1. (A.13)

Since B(µ1, µ2) = Γ(µ1)Γ(µ2)
Γ(µ1+µ2)

, X1 + X2 is gamma- and X1

X1+X2

beta-distributed as

claimed.

Eq. (A.3) is the special case of a gamma distribution with µ = ν = 1. With a

simple induction on n, we can show that Xevent and Xpoint (Eq. (A.4) and (A.5))

are gamma distributed with parameters µ = n, ν = 1. It is similarly easy to prove

that the Hopkins statistic, defined in Eq. (A.6), is beta-distributed with parameters

σ = τ = n,

pH(x) =
xn−1(1− x)n−1

B(n, n)
. (A.14)

With this last equation, it is a simple exercise to show that the expectation value of
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H is 1
2

and the variance 1
4(2n+1)

.

These results allow us to compute p-values for the null hypothesis of CSR. The

p-value is the probability that the observed value of the Hopkins statistic would occur

if point position were purely random. If the measured Hopkins statistic is h, then the

p-value is equal to

p-value = 1− 1

B(n, n)

∫ 1/2+|h−1/2|

1/2−|h−1/2|

xn−1(1− x)n−1dx (A.15)

The last result can be expressed in terms of the incomplete beta function

Binc(σ, τ, x) =

∫ x

0

x′σ−1(1− x′)τ−1dx′ (A.16)

as

p-value = 1 + Binc

(

n, n,
1

2
+

∣

∣

∣

∣

h− 1

2

∣

∣

∣

∣

)

− Binc

(

n, n,
1

2
−

∣

∣

∣

∣

h− 1

2

∣

∣

∣

∣

)

. (A.17)

Values of the incomplete beta function have been tabulated. Binc is also a built-in

function in computer software such as Mathematica or Matlab.

To demonstrate that the Hopkins statistic agrees with our intuition we can cal-

culate it for the three patterns in Fig. A.1 with n = 10. Repeating the calcula-

tion 10 times independently for each case, the results are H = 0.5 ± 0.1 for A.1(a),

H = 0.84 ± 0.05 for A.1(b), and H = 0.21 ± 0.05 for A.1(c). Hence, the Hopkins

statistic could not detect a significant deviation from CSR in the first case, but a

tendency towards aggregation in the second and regularity in the third case. The

p-value for A.1(b) is 5.2 × 10−4 and for (c) 4.7 × 10−3, so the deviation from CSR

appears statistically significant which is indeed what we intuitively expect by looking

at the figure.
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APPENDIX B

ALGORITHM FOR CARTOGRAM

DISPLACEMENT FIELD CONSTRUCTION

Constants and variables

� Length of map in x and y directions
integer LX,LY

� Array for densities
float rho 0[LX + 1][LY + 1], rho[LX + 1][LY + 1]
� rho 0[j][k] is the density at t = 0, rho[j][k] that at t > 0.

� Arrays for the velocity field at integer-valued positions
float gridvx[LX + 1][LY + 1], gridvy[LX + 1][LY + 1]
� gridvx[j][k] is the velocity component in x direction at position (j, k). Similarly for y.

� Arrays for the position at t > 0
float x[LX + 1][LY + 1], y[LX + 1][LY + 1]
� x[j][k] is the x-coordinate for the element that was at position (j, k) at time t = 0.

� Arrays for the velocity field at position (x[j][k], y[j][k])
float vx[LX + 1][LY + 1], vy[LX + 1][LY + 1]
� vx[j][k] is the velocity component in x direction at the position (x[j][k], y[j][k]),

vy[j][k] the velocity component in y direction.

Program CARTOGRAM
Initialize rho 0.
If wanted, perform Gaussian blur by Fast Fourier Transform.
Replace rho 0 by cosine Fourier transform in both variables.
t← 0 � Initialize time.
h← HINITIAL � Initialize time step size.
� Initialize x, y, vx and vy.
for j ← 0 to LX
do for k ← 0 to LY

do x[j][k] ← j
y[j][k] ← k
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Call subroutine CALCV(time = 0.0).
for j ← 0 to LX
do for k ← 0 to LY

do vx[j][k] ← gridvx[j][k]
vy[j][k] ← gridvy[j][k]

while the position arrays x and y have not sufficiently converged
do Call subroutine CALCV(time = t + h).

for j ← 0 to LX
do for k ← 0 to LY

do � Find the new positions in the following manner. First we
take a naive integration step:
vxminus ← vx[j][k]
vyminus ← vy[j][k]
vxplus ← ~vx(t + h, x[j][k]+h*vx[j][k],

y[j][k]+h*vy[j][k])
vyplus ← ~vy(t + h, x[j][k]+h*vx[j][k],

y[j][k]+h*vy[j][k]),
� where the velocity ~v at time t + h and position
(x[j][k]+h*vx[j][k], y[j][k]+ h*vy[j][k]) can be interpolated
from the arrays gridvx and gridvy. Then we expect the new
position at time t + h to be:
xguess ← x[j][k] + 0.5*h*(vxminus+vxplus)
yguess ← y[j][k] + 0.5*h*(vyminus+vyplus)
� Then we make a better approximation by solving
the two nonlinear equations:
xappr[j][k] - 0.5*h*~vx(t + h, xappr[j][k], yappr[j][k]) - x[j][k]

- 0.5*h*vx[j][k] = 0,
yappr[j][k] - 0.5*h*~vy(t + h, xappr[j][k], yappr[j][k]) - y[j][k]

- 0.5*h*vy[j][k] = 0
� simultaneously for xappr[j][k], yappr[j][k], e.g., using the
Newton-Raphson method with (xguess, yguess) as initial guess.
The velocity ~v at time t + h and position (xappr[j][k],yappr[j][k])
can again be interpolated from the arrays gridvx and gridvy.
If (xguess, yguess) and (xappr[j][k], yappr[j][k]) differ by more
than some predefined tolerance, reduce step size h, break, and
try again.

t← t + h

for j ← 0 to LX
do for k ← 0 to LY

do x[j][k] ← xappr[j][k]
y[j][k] ← yappr[j][k]
vx[j][k] ← ~vx(t + h, xappr[j][k], yappr[j][k])
vy[j][k] ← ~vy(t + h, xappr[j][k], yappr[j][k])

Increase step size h.
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Subroutine CALCV(time t)
� First calculate the density rho by filling the array with the Fourier coefficients.
for j ← 0 to LX
do for k ← 0 to LY

do rho[j][k] ←
exp(-((π ∗ j/LX)*(π ∗ j/LX)+(π ∗ k/LY )*(π ∗ k/LY ))*t)*rho 0[j][k]

� Calculate the Fourier coefficients for the partial derivative of rho. Store temporary
result in arrays gridvx, gridvy.

for j ← 0 to LX
do for k ← 0 to LY

do gridvx[j][k] ← -(π ∗ j/LX)*rho[j][k]
gridvy[j][k] ← -(π ∗ k/LY )*rho[j][k]

Replace rho by cosine Fourier backtransform in both variables.
Replace gridvx by sine Fourier backtransform in the first and cosine Fourier

backtransform in the second variable.
Replace gridvy by cosine Fourier backtransform in the first and sine Fourier

backtransform in the second variable.
� Calculate the velocity field.
for j ← 0 to LX
do for k ← 0 to LY

do gridvx[j][k] ← -gridvx[j][k]/rho[j][k]
gridvy[j][k] ← -gridvy[j][k]/rho[j][k]
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senschaftliche Buchgesellschaft, 3rd ed., 1980.

[79] G. E. Stephan, “The distribution of service establishments,” Journal of Regional
Science, vol. 28, pp. 29–40, 1987.

[80] S. M. Gusein-Zade, “Alternative explanations of the dependence of the density
of centers on the density of population,” Journal of Regional Science, vol. 33,
pp. 547–558, 1993.

[81] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,”
Reviews of Modern Physics, vol. 74, p. 47, 2002.

[82] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks,” Advances In
Physics, vol. 51, p. 1079, 2002.

[83] M. E. J. Newman, “The structure and function of complex networks,” SIAM
Review, vol. 45, p. 167, 2003.

[84] W. L. Garrison, “Connectivity of the Interstate Highway systerm,” Papers and
proceesings of the Regional Science Association, vol. 6, pp. 121–137, 1960.

[85] K. J. Kansky, Structure of transportation networks: Relationships between net-
work geometry and regional characteristics. University of Chicago: Department
of Geography, 1963.

[86] P. Haggett and R. J. Chorley, Network analysis in geography. New York: St.
Martin’s Press, 1969.

[87] L. B. Leopold, “Trees and streams: The efficiency of branching patterns,” Jour-
nal of Theoretical Biology, vol. 31, pp. 339–354, 1971.

131



[88] T. A. McMahon and R. E. Kronauer, “Tree structures: Deducing the principle
of mechanical design,” Journal of theoretical biology, vol. 59, pp. 443–466, 1976.

[89] M. Zamir, “Optimality principles in arterial branching,” Journal of Theoretical
Biology, vol. 62, pp. 227–251, 1976.

[90] P. S. Stevens, Patterns in nature. Boston: Little, Brown and Company, 1974.

[91] S. Redner, “How popular is your paper? An empirical study of the citation
distribution,” European Physical Journal B, vol. 4, pp. 131–134, 1998.

[92] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and cen-
trality in protein networks,” Nature, vol. 411, p. 41, 2001.

[93] R. Albert, H. Jeong, and A.-L. Barabási, “The diameter of the world-wide web,”
Nature, vol. 401, p. 130, 1999.

[94] B. A. Huberman and L. A. Adamic, “Internet: Growth dynamics of the world-
wide web,” Nature, vol. 401, p. 131, 1999.

[95] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S.
Manna, “Small-world properties of the Indian railway network,” Physical Re-
view E, vol. 67, p. 036106, 2003.

[96] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of
the internet topology,” Computer Communications Review, vol. 29, pp. 251–
262, 1999.

[97] D. J. Watts, Small Worlds. Princeton University Press, 1999.

[98] S. Yang, N. Hsu, and W. W.-G. Louie, P. W. F.and Yeh, “Water distribution
network reliability: Connectivity analysis,” Journal of Infrastructure Systems,
vol. 2, pp. 54–64, 1996.
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