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Abstract

We study spatial distribution networks, such as gas pipelines or train tracks, which
grow from an initial source or sink of the commodity transported by the network.
The efficiency depends on two properties. First, the paths to the root are ideally
not much longer than the “crow flies” distance. Second, the length of all connections
in the network should be low. Even though these two criteria cannot be optimized
simultaneously, real networks are nevertheless nearly optimal in both respects. We
propose two models to explain how this situation can arise and analyze the fractal
properties of the resulting networks.

1 Introduction

A network (or graph) is a set of points or vertices joined together in pairs by lines or
edges. Networks provide a useful framework for the representation and modeling of many
technological, biological, and social systems, and have received a substantial amount of
attention in the past few years. Reviews of recent developments in network research can be
found in [1, 2, 3]. In this paper we look at the special case of networks in which the vertices
occupy particular positions in geometric space. Not all networks have this property—
web pages on the world wide web, for example, do not live in any particular geometric
space—but many others do. Examples include transportation networks, communication
networks, and power grids. Although the study of spatial networks has a history of several
decades [4, 5, 6], it has only come back into the limelight during the latest surge of network
research [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Here we focus on the spatial layout of man-made distribution or collection networks,
such as oil and gas pipelines, sewage systems, and train or air routes. The vertices in these
networks represent, for instance, households, businesses, or train stations and the edges
represent pipes or tracks. The networks considered here also have a “root node,” a vertex
that acts as a source or sink of the commodity distributed—a sewage treatment plant, for
example, or a central train station.

Geography clearly affects the efficiency of these networks. There are various possible
definitions of efficiency and optimality [24, 25, 26]; in this paper we follow an idea put
forward by Stevens [27]. A “good” distribution network, as we will consider it, has two
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definitive properties. First, the network should be efficient in the sense that the paths from
each vertex to the root vertex are relatively short. That is, the sum of the lengths of the
edges along the shortest path through the network should not be much longer than the
“crow flies” distance between the same two vertices: if a subway track runs all around the
city before getting you to the central train station, the train is probably not of much use
to you. Second, the sum of the lengths of all edges in the network should be low so that
the network is economical to build and maintain. In Sec. 2 we consider networks which
are optimal in this second sense, but, as we will show in Sec. 3, perform poorly in the first
sense. Real networks, however, manage to find solutions to the distribution problem that
come remarkably close to being optimal in both senses. In Sec. 4 and 5 we suggest possible
explanations for this observation in the form of two growth models for geographic networks
that generate networks whose efficiency and shape are comparable to real-world examples.

2 A network growth model with minimum total length

To begin our analysis we will assume that the cost in building a distribution network is
proportional to the total length of its edges. In reality the situation is certainly more
complicated, but this assumption is a plausible approximation. The cheapest of all possible
networks connecting all vertices together is then by definition the minimum spanning tree
(MST).1 MSTs are usually considered to be static objects where all vertices to be included
in the network are known. However, if the network forms by growing outward from a root
vertex as the population swells and infrastructure is extended and improved, the number of
vertices in the final network cannot be predicted from the start. Instead we now introduce
a dynamic version of the static MST which might be called a “growing” or “invading”
minimum spanning tree [30].

We assume that at the beginning we are given the positions of the root vertex, e.g. an
oil well or a central train station, and of several other points, e.g. houses or towns, that are
candidates to join the network. A cluster connected to the root is built up by repeatedly
adding the shortest edge that joins one unconnected vertex to another that is part of the
cluster. In Fig. 1, the first few steps of this growth process are shown. Fig. 2 shows a large
growing MST on a random point distribution where different colors were used to indicate
when the edges were added.

The construction of this network is similar to that of invasion percolation clusters on
Delaunay graphs as studied by McCarthy [31]. In his model random weights are assigned
to each edge, and the edge with the smallest weight is added at each step. All of the edges
in the growing MST are also edges in the Delaunay graph, but the weights on the edges are
now equal to their geometric length, so the weights are, unlike in [31], neither uniformly
nor independently distributed. This fact makes a rigorous mathematical treatment difficult,

1If we are not restricted to the specified vertex set, but are allowed to add vertices freely, then the optimal
solution is the Steiner tree. The construction of a Steiner tree is an NP-hard problem [28], and hence not
feasible for all but very small networks. The total length of the MST can be proved to be in the worst case
only a factor 2/

√
3 ≈ 1.15 more than that of the Steiner tree [29], and practically all of the results presented

here remain unchanged if Steiner trees were used instead of MSTs.
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Figure 1: The first few steps during the construction of a growing minimum spanning tree.
At the beginning, only the root vertex (square) is part of the tree. Then we repeatedly add
the shortest edge between one connected and one unconnected vertex.

but we conjecture that the growing MST falls in the same universality class as ordinary
percolation.

To support this conjecture, we have calculated the fractal dimension of the set of vertices
in the tree as well as the fractal dimension of its external perimeter. The perimeter is defined
by constructing the Voronoi cells for all vertices, including those that are unconnected.2

Every cell containing a connected vertex is considered as filled, all others as empty. The
external perimeter divides the filled Voronoi cells from the unbounded empty exterior, as
in Fig. 3(a). A typical arrangement of filled Voronoi cells for a large network on a random
point pattern is shown in Fig. 3(b). It has the typical appearance of a fractal — the interior
contains numerous holes of various sizes and is bounded by a complex curve with “fjords”
reaching deep into the cluster.

One of many (more or less equivalent) ways to define a fractal dimension is based on
density correlations. First, we fix a number of vertices v1, v2, ..., vk belonging to the tree.
Then we count the number of connected vertices in the tree inside a ball of radius ε about
vi, Ni(ε). If d is the fractal dimension of the point pattern, the sum of these numbers is
expected to grow as εd. Hence, we can calculate d as the derivative

d =

d log

(

∑k
i=0

Ni(ε)

)

d log(ε)
. (1)

The value of d obtained in this manner is the correlation dimension [32].
Strictly speaking, the above derivative depends on ε. For very small ε, the only point in

each ε-ball is the center itself, hence the slope becomes zero. The same happens for large

2The Voronoi cell of a vertex is defined as the region in space closer to this vertex than to any of the
other vertices.
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Figure 2: Growing minimum spanning tree with 100 000 vertices.

ε because each ε-ball encloses the whole tree. But for intermediate values of ε the slope is
known to be a good estimate of the fractal dimension. We have therefore calculated d as
the slope in the region of the steepest descent. Based on networks with 100 000 vertices
each, we find a fractal dimension of Dnetw = 1.89 ± 0.02 which agrees with the value found
for invasion percolation clusters [33].

Applying the same technique to the external perimeter, we determined its fractal di-
mension to be Dper = 1.36±0.03. Hence, the perimeter is not a simple one-dimensional line
because it extends into all the fjords along the boundary. The fractal dimension is again
consistent with that of the external accessible perimeter of invasion percolation clusters,
4/3, which supports our conjecture that growing MSTs belong to the same universality
class. In Sec. 4 and 5 we will analyze how simple modifications of the presented growth
model lead to quite different fractal geometries.

3 The efficiency of real networks

Let us now compare the properties of MSTs with some real-world distribution networks.
We consider four examples as follows. The first network is the sewer system of the City of
Bellingham, Washington. From GIS data for the city, we extracted the shapes and positions
of the parcels of land (roughly households) into which the city is divided and the lines along
which sewers run. We constructed a network by assigning one vertex to each parcel whose
centroid was less than 100 meters from a sewer. The vertex was placed on the sewer at
the point closest to the corresponding centroid and adjacent vertices along the sewers were
connected by edges. The city’s sewage treatment plant was used as the root vertex, for a
total of 23 922 vertices including the root.

Our next two examples are networks of natural gas pipelines, the first in Western Aus-
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Figure 3: (a) The Voronoi cells of the tree in the last panel of Fig. 1. All cells containing a
connected vertex are marked red and the perimeter is highlighted in green. (b) The interior
and perimeter of the tree of Fig. 2.

tralia (WA) and the second in the southeastern part of the US state of Illinois (IL).3 We
assigned one vertex to each city, town, or power station within 10km (WA) or 10,000 feet
(IL) of a pipeline. The vertex was placed on the pipeline at the point closest to each such
place, and adjacent vertices were joined by edges. The root for WA was chosen to be the
shore point of the pipeline leading to the Barrow Island oil fields and for IL to be the con-
fluence of two major trunk lines near the town of Hammond, IL. The resulting networks
have 226 (WA) and 490 (IL) vertices including the roots.

For our last example we take the commuter rail system operated by the Massachusetts
Bay Transportation Authority in the city of Boston, MA (Fig. 4a). In this network, the
125 stations form the vertices and the tracks form the edges. In principle, there are two
components to this network, one connected to Boston’s North Station and the other to South
Station, with no connection between the two. Since these two stations are only about one
mile apart, however, we have, to simplify calculations, added an extra edge between the
North and South Stations, joining the two halves of the network into a single component.
The root node was placed halfway between the two stations for a total of 126 vertices in all.

In Table 1, we show the total edge lengths for each of our networks, along with the
edge lengths for the MST on the same set of vertices. We find that the real-world networks,
although not strictly optimal, are quite competitive with MSTs. The combined edge lengths
of the real networks range from 1.12 to 1.63 times those of the corresponding MSTs. But
even though the MST on the set of stations in the Boston commuter rail network, Fig. 4(b),
is merely 11% shorter, it does not resemble the real network much. Looking at some of the
paths in Fig. 4(a) and (b), we find that the paths to the root tend to be more circuitous
in the MST than in reality. Hence, passengers would have to take quite long journeys in
the MST, even from stations whose “crow flies” distance to the root is rather short. These
circuitous routes would of course be annoying, and a good reason why one would not build

3South of 41.00◦N and east of 89.85◦W We consider only the largest component within this region.
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(a) (b) (c)

Figure 4: (a) Commuter rail network in the Boston area. (b) Minimum spanning tree.
(c) Star graph. The arrow marks the assumed root of the network. Paths in the real
network, like the one highlighted in red, are more direct than in the minimum spanning
tree. In fact they are almost as short as the straight line connections of the star graph.

the MST, but some different network.
To make a comparison between MSTs and real networks, we consider the distance from

each non-root vertex to the root first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean ratio of these two distances over all
such vertices. Following Ref. [34], we refer to this quantity as the network’s route factor,
and denote it q:

q =
1

n − 1

n−1
∑

i=1

li0
di0

, (2)

where li0 is the distance along the edges of the network from vertex i to the root (which
has label 0), and di0 is the direct Euclidean distance. (A similar measure “tortuosity” was
used in [30].) If there is more than one path through the network to the root, we take the
shortest one, but, since our examples are all nearly trees, most paths are unique. Thus, for
example, q = 2 would imply that on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-line connection.

The smallest possible value of the route factor is 1, which is achieved by the “star graph”,
Fig. 4(c), in which every vertex is connected directly to the root by a single straight edge.
The route factors for the four real networks are shown in Table 1. As we can see, paths in
the networks, although not perfectly straight, are in most cases not far away from simple
straight lines, with route factors quite close to 1. Actual values range from q = 1.13 for the
Western Australian gas pipelines to q = 1.59 for the sewer system. Furthermore, the route
factors in all real networks are consistently better than those in the MSTs.

But now consider the column in the table, which gives the the total edge lengths for the
star graphs. These figures are for all networks much larger than the optimal case and, more
importantly, much poorer than the real-world networks too. Thus, although the MST is
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edge length (km) route factor
network n actual MST star actual MST star

sewer system 23 922 498 421 102 998 1.59 2.93 1.00
gas (WA) 226 5 578 4 374 245 034 1.13 1.82 1.00
gas (IL) 490 6 547 4 009 59 595 1.48 2.42 1.00
rail 126 559 499 3 272 1.14 1.61 1.00

Table 1: Number of vertices n, total edge length, and route factor q for each of the networks
described in the text, along with the equivalent results for the star graphs and minimum
spanning trees on the same vertices.

optimal in terms of total edge length, it is very poor in terms of route factor, and the reverse
is true for the star graph. Neither of these models would be a good general solution to the
problem of building an efficient and economical distribution network. Real-world networks,
on the other hand, appear to find a remarkably good compromise between the two extremes,
possessing simultaneously the benefits of both the star graph and the minimum spanning
tree, without any of the flaws. In the remainder of this paper we consider two mechanisms
by which this might occur.

4 A network growth model with low route factor

Our first attempt to explain these observations is a modification of the growing MST of
Sec. 2. Like the growing MST, this modified model will build a growing network based on a
“greedy” optimization criterion that always adds the current best candidate edge. However,
now the best candidate is not simply the shortest edge; instead the route factor will become
part of the decision about which vertex to add next.

This is simply done by specifying a weight for each edge (i, j) thus:

wij = dij + α
dij + lj0

di0

, (3)

where α is a non-negative independent parameter, dij is the direct Euclidean distance
between vertices i and j, lij the distance along the shortest path in the network, and the
root vertex has label 0. The first term in (3) is the length of the prospective edge, which
represents the cost of building the corresponding pipe or track, and the second term is the
contribution to the route factor from vertex i. At every step we now add to the network the
edge with the global minimum value of wij . The single parameter α controls the extent to
which our choice of edge depends on the route factor. For α = 0, the network is a growing
MST, which we found to give unrealistically high route factors. As α is increased from zero,
however, the model becomes more and more biased in favor of making connections that give
good values for the route factor.

For simplicity we will, as we already did in Sec. 2, assume that the vertices are randomly
distributed in two-dimensional space with unit mean density and with one vertex randomly
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Figure 5: Simulation results for the route factor q and average edge length l̄ as a function
of α for our first model with 10 000 vertices. The length scale is normalized by setting
the mean density equal to one. Inset: an example model network with α = 12.0. Colors
indicate the order in which edges were added to the network.

designated as the root of the network. The inset of Fig. 5 shows a network grown in this
manner for α = 12. The network has a dendritic appearance, with relatively straight trunk
lines and short branches, bearing a superficial resemblance to diffusion-limited aggregation
clusters [35], although they are based on entirely different mechanisms.

In Fig. 5 we also plot the route factor q of the network and the average length of an edge
l̄ against α. As α is increased, the route factor does indeed go down in this model, just as
we expect. Furthermore, it decreases initially very sharply with α, while at the same time l̄,
which is proportional to the cost of building the network, increases only slowly. Thus,
it appears to be possible to grow networks that cost only a little more than the optimal
(α = 0) network, but which have far less circuitous routes. This finding fits well with our
observations of real distribution networks.

The transition from the rather amorphous shapes of a growing MST to a dendritic
pattern is best studied by looking at the arrangement of filled Voronoi cells. Fig. 6 shows
the patterns for different values of α. Clearly, the shape becomes more centered about the
root (marked by the black square) and the holes become smaller and are pushed towards
the periphery of the network as α increases. Assuming that only the filled Voronoi cells will
be close enough to the network to attract human settlement, our findings for α = 2.4 and
α = 24 are consistent with Benguigui’s observation that cities are more compact around
their centers than around their periphery [36]. One way to quantify how much better the

8



Figure 6: Top: The filled Voronoi cells of networks for three different values of α. The black
square marks the position of the root. Bottom: The fractal dimension of the network Dnetw

and its perimeter Dper as a function of α measured in networks with 50, 000 vertices each.

network fills the surrounding space is by looking at the fractal dimension. Since the holes
tend to move to the periphery, the fractal dimension is not necessarily uniform everywhere,
but we can obtain meaningful results by measuring the fractal dimension only for the core
region. We define the core by first determining the maximum distance between the root
and any point on the perimeter, and then eliminating everything farther away from the
root than half that distance. The plot in Fig. 6 shows a smooth transition from a fractal
dimension of 1.89 for the growing MST to the “trivial” value 2, indicating that the holes
near the root gradually shrink and disappear. (This is different from the dendritic patterns
of diffusion-limited aggregation whose fractal dimension is only 1.71 [37].)

The boundaries of the networks, on the other hand, remain complex geometric objects
even for large α. This is reflected by the fractal dimension of the external perimeter whose
value, although slightly decreasing, remains bigger than 1. Empirical measurements of city
borders from satellite images yield fractal dimensions between 1.25 and 1.38 [38] similar to
what we find in our model.

While this is a pleasing result, another aspect of the model is quite unrealistic. Some
vertices, even ones lying quite close to the root, are joined to the network very late, because
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connecting them is costly in terms of the route factor. Arguably, the real world does not
work this way: one does not decide to leave parts of a city without sewer service just
because there is no convenient straight line for the sewer to take. Instead, connections are
presumably made to those vertices that can be connected to the root by a reasonably short
path, regardless of whether that path is straight. In the case of trains, for instance, people
will use a train service, and thereby justify its construction, if their train journey is short
in absolute terms, and are less likely to take a longer journey even if the longer one is along
a straight line. As we now show, we can, by incorporating these considerations, produce a
different model that still generates highly efficient networks.

5 A network growth model with short connections to the

root

Let us modify Eq. (3) to give preference to short paths regardless of their shape. To do
this, we write the weight of a new edge (i, j) as simply

w′

ij = dij + βlj0. (4)

A model with a similar weight function was studied previously by Fabrikant et al. [7].
However, unlike there, we assume here that the vertex positions are specified from the outset,
rather than being added to the network one by one. This corresponds to a situation where
sites available for settlement are determined from the beginning, which we feel is appropriate
for a model of urban networks since city ordinances typically determine potential sites
decades before they are finally developed.

Note that, unlike in Eq. (3), there is now no explicit term in Eq. (4) that guarantees low
route factors. Nonetheless, the model self-organizes to a state whose route factor is small.
Figure 7 shows results from simulations of this second model. As the plot shows, the results
are qualitatively quite similar to our first model: the high value of q seen for β = 0 drops
off quickly as β is increased, while the mean edge length increases only slowly. Thus we can
again choose a value for β that gives behavior comparable with our real-world networks,
having simultaneously low route factor and low total cost of building the network. Values
of q in the range 1.1 to 1.6 observed in the real-world networks are easily achieved.

When we look at the shape of the network itself, however, we get quite a different
impression (see Fig. 8). This model produces more symmetric networks that fill space out
to some approximately constant radius from the root. The second term in Eq. (4) makes
it economically disadvantageous to build connections to outlying areas before closer areas
have been connected. Thus, all vertices within a given distance of the root are served by
the network, without gaps, increasing the fractal dimension of the network quickly from
1.89 to 2 already for small β. However, unlike the dendritic shapes of Fig. 5, the perimeter
now becomes more circular and, hence, in the limit of large β, a one-dimensional object.

Radial growth in fact may be the secret of how low route factors are achieved in reality.
Our second model, unlike our first, does not explicitly aim to optimize the route factor, but
it does a creditable job nonetheless, precisely because it fills space radially. The main trunk
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Figure 7: Route factor q and average edge length l̄ as a function of β for our second model
and 10 000 vertices. Inset: an example model network with β = 0.4.

lines in the network are forced to be approximately straight simply because the space to
either side of them has already been filled and there is nowhere else to go but outwards.

How can this be reconciled with the observation that real networks, and the towns they
serve, are dendritic in form? One might argue that it is primarily a consequence of other
factors, such as ribbon development along rivers or highways. In other words, the initial
distribution of vertices in real networks is usually non-uniform, unlike our model. It is
interesting to see therefore what happens if we apply our model to a realistic scatter of
points, and in Fig. 4b we have done this for the stations of the Boston rail system. The
figure shows the network generated by our second model with β = 0.4 acting on the real-
world positions of the stations. The result is, with only a couple of exceptions, identical to
the true rail network, with a comparable route factor of 1.11 and total edge length 511km.
This is a nontrivial result: our first model, for example, does not reproduce the true network
nearly so well for any value of α.

6 Conclusion

In this paper, we have studied models of growing spatial distribution networks and compared
our results with empirical data. We presented a growing version of the minimum spanning
tree which keeps the cost in terms of edge length at a minimum. However, in terms of the
network distance between vertices, as measured by the so-called route factor, this model is
rather poor. Generally, short network length and small route factor are at odds with one
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Figure 8: Top: The filled Voronoi cells of networks for three different values of β and 50, 000
vertices. Bottom: Fractal dimensions.

another, the first normally being decreased only at the expense of an increase in the second.
Nonetheless, analyzing several real spatial distribution and collection networks, we found
that the real world finds good compromise solutions giving nearly optimal values of both
network length and route factor.

We have presented two models of growing networks based on greedy optimization strate-
gies that show how this might occur. The first model produces networks of dendritic shape,
the second model leads to radial growth. A comparison between fractal dimensions in model
and reality gives some credibility to the first model. The second model, however, appears
more plausible from first principle; it also is more successful at reproducing actual network
structures on real point distributions.

Our focus was primarily on man-made networks, but it is plausible that our arguments
are applicable to biological networks as well, such as the circulatory system [39, 40] or fungal
mycels [41]. A more careful investigation, however, will be left for future research.
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(a) (b)

Figure 9: (a) Commuter rail network in the Boston area. (b) The model of Eq. (4) applied
to the same set of stations. The arrow marks the assumed root of the network.
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[18] A. Barrat, M. Barthélemy, and A. Vespignani, “The effects of spatial constraints on the
evolution of weighted complex networks,” Journal of Statistical Mechanics, p. P05003,
2005.

[19] T. Petermann and P. De Los Rios, “Spatial small-world networks: A wiring-cost per-
spective.” Preprint cond-mat/0501420, 2005.
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