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A quantity of practical importance in the design of an infrastructure network is the
amount of traffic along different parts in the network. Traffic patterns primarily depend
on the users’ preference for short paths through the network and spatial constraints for
building the necessary connections. Here we study the traffic distribution in a spatial
network model which takes both of these considerations into account. Assuming users
always travel along the shortest path available, the appropriate measure for traffic
flow along the links is a generalization of the usual concept of "edge betweenness”.
We find that for networks with a minimal total maintenance cost, a small number of
connections must handle a disproportionate amount of traffic. However, if users can
travel more directly between different points in the network, the maximum traffic can
be greatly reduced.

1 Introduction

In the last few years there has been a broad interdisciplinary effort in the analy-
sis and modeling of networked systems such as the world wide web, the Internet,
and biological, social, and infrastructure networks [16]. A network in its simplest
form is a set of nodes or vertices joined together in pairs by lines or edges. In
many examples, such as biochemical networks and citation networks, the ver-
tices exist only in an abstract “network space” without a meaningful geometric
interpretation. But in many other cases, such as the Internet, transportation or
communication networks, vertices have well-defined positions in literal physical
space, such as computers in the the Internet, airports in airline networks, or cell
phones in wireless communication networks.
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The spatial structure of these networks is of great importance for a better
understanding of the networks’ function and topology. Recently, several authors
have proposed network models which depend explicitly on geometric space [1, 3,
6,7, 9,12, 13, 15, 17, 18, 19, 20, 21, 22]. In all of these models, nearby vertices
are more likely to be connected than vertices far apart. However, the importance
of geometry manifests itself not only in the tendency to build short edges, but
also in the traffic flow on the network: given a choice between different paths
connecting two (not necessarily adjacent) vertices in the network, users will
generally prefer the shortest path. With few exceptions [2, 4], the literature on
spatial networks has rarely analyzed traffic patterns emerging from the various
models. To address this issue, this paper takes a closer look at one particular
model [10] and analyzes the distribution of traffic along the edges in the network.

2 A model for optimal spatial networks

Suppose we are given the positions of n vertices, e.g. cities or airports, and we
are charged with designing a network connecting these vertices together, e.g.
with roads or flights. The efficiency of the network, as we will consider it here,
depends on two factors. On the one hand, the smaller the sum of the lengths of
all edges, the cheaper the network is to construct and maintain. On the other
hand, the shorter the distances through the network, the faster the network can
perform its intended function (e.g., transportation of passengers between nodes
or distribution of mail or cargo). These two objectives generally oppose each
other: a network with few and short connections will not provide many direct
links between distant points and, consequently, paths through the network will
tend to be circuitous, while a network with a large number of direct links is
usually expensive to build and operate. The optimal solution lies somewhere
between these extremes.

Let us define /;; to be the shortest geometric distance between two vertices
i and j measured along the edges in the network. If there is no path between
i and j, we formally set /;; = oo. Introducing the adjacency matrix A with
elements A;; = 1 if there is an edge between ¢ and j and A;; = 0 otherwise,
we can write the total length of all edges as T' = 3, <j Aijlij. We assume this
quantity to be proportional to the cost of maintaining the network. Clearly this
assumption is only approximately correct: networked systems in the real world
will have many factors affecting their maintenance costs that are not accounted
for here. It is however the obvious first assumption to make and, as we will see,
can provide us with good insight about network structure.

Besides maintenance, there is also a cost Z due to traveling through the
network for the user. In a spirit similar to our assumption about maintenance
costs, we will assume that the total travel cost is given by the sum of the distances
between all vertex pairs. There is, however, one complicating factor. The travel
costs are not necessarily proportional to geometric distances between vertices. In
some cases, e.g. road networks, the quickest and cheapest route will indeed not
be very different from the shortest route measured in kilometers. But in other
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networks, travel costs depend more strongly on the graph distance, i.e. the
number of legs in a journey. In an airline network, for instance, passengers often
spend a lot of time waiting for connecting flights, so that they care more about
the number of stopovers they have to make than about the physical distance
traveled.

To model both cases we introduce two different expressions for the travel
costs. For a road network, these costs are approximately Z; =, _ j l;; where
l;; is again the shortest geometric distance between ¢ and j. For an airline
network, a better approximation is Z = ), j hi; where h;; is the minimum
number of legs in the journey. The total cost of running the network is then
proportional to the sum T'++vZ; or T+ 72y, respectively, with v > 0 a constant
that measures the relative importance of the two terms. The optimal network
in our model is the one minimizing the thus defined total cost [5, 14].1

The number of edges in the network depends on the parameter v. If v — 0,
the cost of travel oc Z} /5 vanishes and the optimal network is the one that simply
minimizes the total length of all edges. That is, it is the minimum spanning tree
(MST), with exactly n — 1 edges between the n vertices. Conversely, if v — co
then Z,,5 dominates the optimization, regardless of the cost T' of maintaining
the network, so that the optimum is a fully connected network or clique with
all %n(n — 1) possible edges present. For intermediate values of v, finding the
optimal network is a non-trivial combinatorial optimization problem, for which
we can derive good, though usually not perfect, solutions using the method of
simulated annealing [8].

We show networks obtained in this manner in Fig. 1. For v = 0.0002 the
optimum networks are almost identical to MSTs independent of the users’ pref-
erence for either short mileage or a small number of stopovers. As <y increases,
however, the two models show very distinct behaviors. In the first case the num-
ber of edges grows, whereas in the second case the networks remain trees for all
but very large ~. If users wish to minimize graph distances, a small number of
highly connected vertices appear with increasing . Like hubs in an airline net-
work, these vertices collect most of the traffic from other vertices in the vicinity.
On the other hand, if users care about geometric distances, there are no such
hubs. These differences influence the traffic patterns as we will now show.

3 Edge betweenness as a measure for traffic flow

The definitions of Z; and Z; imply three assumptions. First, there is an equal
demand for traveling between all origin-destination pairs. Second, all edges
have infinite capacities, so that there are no delays due to congestion. Third,
all the traffic is along the shortest paths through the network, either measured

IThe critical reader might have noticed that Z; has the dimension of a length whereas
Z2 is dimensionless. In this paper, we will get rid of Z1’s dimension by setting the average
Euclidean “crow flies” distance between a vertex and its nearest neighbor equal to one. This
will be accomplished by placing n vertices in a square of length 24/n and imposing periodic
boundary conditions.
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Figure 1: Networks minimizing 7' 4+ vZ1 (top) and T + vZ, (bottom) for different
values of v and n = 200 vertices each. The networks in the top row are obtained by
minimizing geometric distances between vertices; the bottom row shows the results if
the relevant distance for the user is the graph distance. The thickness of the edges
represents the betweenness defined in Sec. 3. Note that we have imposed periodic
boundary conditions, i.e. a line leaving the square at the top enters the square again
at the bottom, and similarly a line at the left end reappears on the right.

by geometric or graph distance; in other words, users do not take intentional
detours. The situation in real networks is, of course, more complicated, but
these assumptions are a plausible starting point.

An appropriate way to measure traffic flow under these assumptions is a
generalization of the “edge betweenness” which was first introduced in [11]: We
send one unit of flow between every possible origin-destination pair along the
shortest path and count the number of units that have passed through one
particular edge. Equivalently, the edge betweenness is the number of shortest
paths in the network running along that edge. In [11], distances are measured
as graph distances, but if the user measures path lengths as geometric distances,
we can generalize the idea in an obvious manner. A sample calculation is shown
in Fig. 2.

For the models based on costs Z; and Z, we have constructed optimal net-
works for n = 200 randomly placed vertices and measured the betweenness of
all edges for several values of . In Fig. 3, we plot the cumulative distributions,
i.e. the fraction of the edges in the network whose betweenness is larger than
a certain value b. Panel (a) shows the result for the first model where the user
cost Z; depends on geometric distances; panel (b) shows the distribution for our
second model with the user cost Zs depending on graph distances. For v — 0,
where the optimal networks are MST's, both models possess a long-stretched tail
indicating that in this case some edges, like main arteries, have to support a large
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Figure 2: Calculation of the edge betweenness. (a) A simple illustrative network.
Numbers refer to Euclidean edge lengths. (b) Edge betweennesses for the same network.
For every pair of vertices, we send one unit of flow along the shortest geometric path
between them. The amount of flow is indicated by bold numbers on the edges. Since
there is no edge between A and C, the shortest path between these two vertices is
A & D « C which is slightly shorter than A < B < C. Therefore, the edges A «+ D
and C < D have a betweenness of 2, all other edges a betweenness of 1. We could
have also used graph distance instead of geometric distance, which amounts to setting
all distances in (a) equal to one, but this generally gives different results. In terms of
graph distance, there are, for example, two shortest paths between vertices A and C,
namely via B and via D. Both paths would contribute one half unit of flow to the
edge betweenness.

portion of the flow in the network. If such an edge fails, for example because of
construction or congestion, many routes in the network will be affected.

The distributions for both models become narrower as y increases. The
effect, however, is much stronger in the first than in the second model. For
v = 0.02, for example, no edge in the first model has a betweenness larger than
1200, whereas in the second model the maximum is around 3300. This difference
is closely related to the different network structures. As pointed out in Sec. 2,
the second model, unlike the first, possesses a small number of highly connected
vertices. These hubs collect most of the traffic and, since the networks are trees,
the traffic must inevitably pass through the few edges between the hubs which
explains their high betweenness. Networks generated by the first model, on the
other hand, have no hubs but more edges so that the maximum betweenness is
smaller.

Towards the left-hand side most curves in Fig. 3 have jumps at b = n — 1.
These jumps are present if a large fraction of the vertices have a degree of one
because these vertices can only be reached along one edge, so that traffic from
all other n — 1 vertices must go through that edge. Since the second model
leads to increasingly many such “dead ends” as  grows, the jumps in Fig. 3(b)
become bigger. However, a smaller betweenness than n — 1 is possible as the
curve for v = 0.2 in Fig. 3(a) proves. For v — oo the optimal networks contain
all %n(n — 1) possible edges, hence every edge has in this limit a betweenness
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Figure 3: Cumulative edge betweenness distributions for networks with n = 200
randomly placed vertices. (a) Distributions for networks minimizing the total cost
T + vZ, where the user costs depend on geometric distances. (b) Distributions for
networks minimizing the total cost T' + vZ, where the user costs depend on graph
distances.

equal to one.

4 Conclusion

In this paper we have studied the traffic distribution in a spatial network model.
The model is based on the optimization of maintenance costs measured by the
length of all edges and the ease of travel measured by the sum of all distances be-
tween vertex pairs. A single parameter v determines the relative weight of both
considerations. If users prefer short geometric distances, more edges are added
to the network. On the other hand, if the user prefers short graph distances, a
hub-and-spoke network emerges with only few additional edges.

The traffic along one edge can be measured as its “betweenness” which is the
number of shortest paths in the network using this edge. The cheapest network to
maintain, the MST, has a small number of edges with very high betweenness. If
more weight is given to user-friendliness, the highest betweenness in the network
decreases. The effect, however, is stronger if we minimize geometric rather than
graph distance. In the first case, the additional edges can reduce the traffic by a
large extent, whereas in the second case, the connections between the hubs still
carry a substantial amount of traffic.

In our model, we assumed that all edges can in principle handle infinitely
much traffic. For future work, one could consider edges with finite capacities
so that some edges along the shortest path might become congested and hence
unavailable. This problem, however, possesses some non-trivial features [23]
requiring a more careful analysis of the users’ strategies.
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