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Scaling and entropy in p-median facility location along a line
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The p-median problem is a common model for optimal facility location. The task is to place p facilities (e.g.,
warehouses or schools) in a heterogeneously populated space such that the average distance from a person’s
home to the nearest facility is minimized. Here we study the special case where the population lives along a line
(e.g., a road or a river). If facilities are optimally placed, the length of the line segment served by a facility is
inversely proportional to the square root of the population density. This scaling law is derived analytically and
confirmed for concrete numerical examples of three US interstate highways and the Mississippi River. If facility
locations are permitted to deviate from the optimum, the number of possible solutions increases dramatically.
Using Monte Carlo simulations, we compute how scaling is affected by an increase in the average distance to
the nearest facility. We find that the scaling exponents change and are most sensitive near the optimum facility
distribution.
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I. INTRODUCTION

Quantitative studies in many branches of science frequently
reveal scaling laws where two sets of observables are related by
a power law over several orders of magnitude. Examples range
from astronomy (e.g., Kepler’s third law) to biology, where,
for example, Kleiber’s law states that the metabolic rates of
mammals scale approximately as the three-quarter power of
their body mass [1]. Here we look at a problem from economic
geography, the relationship between the spatial distribution of
a population and the distribution of service establishments
(e.g., post offices or gas stations).

Physicists typically enjoy the luxury of measuring scaling
exponents in carefully designed and repeatable experiments.
In biology and the social sciences, by contrast, the exact
circumstances of an experiment are generally more difficult to
control and to repeat. As a consequence, power-law exponents
are frequently obfuscated by noise in the measurement and in
the process generating the scaling law itself. The remaining
uncertainty can lead to heated debates if, for example, the
scaling exponent in Kleiber’s law is not truly 2/3 instead of
3/4 [2,3]. The available geographic data for the distribution of
service establishments leave similar room for interpretation so
that various scaling laws have been proposed [4–7].

Facing such controversies, theorists often try to calculate
the “correct” exponent from deterministic models. One recur-
ring idea is that scaling should emerge naturally from some
appropriate model if an objective function (energy dissipation
[8], earnings [9], travel distance [4,10,11], etc.) is optimized.
This approach has led to elegant theories, but it leaves one
key problem unaddressed. Knowing that evolutionary biology,
human decisions, or other processes shaping the available
empirical data are intrinsically stochastic, there is in principle
a huge variety of outcomes. How many different solutions are
conceivable? How close to optimal does the observed solution
need to be in order to exhibit the theoretically predicted scaling
exponent?

Here we study a model which serves as an example of
computational techniques suited to address these questions.
The model is the p-median problem of optimal facility

location along a strongly heterogeneously populated line (e.g.,
a transcontinental highway). The task is to place p facilities
along the line and find the configuration that minimizes an
objective function, in this case the average distance to the
nearest facility [12]. Ignoring small-scale heterogeneity in the
population, an analytic calculation predicts a simple scaling
law for the length of the line segments served by different
facilities. The exact optimum locations can be computed
numerically for realistic input data and are in good agreement
with the analytic prediction. Using techniques from statistical
physics, we calculate the number of possible facility locations
for nonminimal costs. With Monte Carlo simulations we will
then quantify how deviations from the optimum make it less
likely to find the theoretical exponent.

II. THE p-MEDIAN PROBLEM

The challenge in facility location problems is to place
p service centers or facilities so that n demand points are
optimally served (see, for example, Ref. [13] for an overview).
Facilities can be hospitals, supermarkets, fire stations, libraries,
warehouses, or any other supply centers providing vital
resources to the population living at the demand points (e.g.,
households or cities). Here we consider the case where the
demand points are at regular intervals along a one-dimensional
geographic object, such as a road or a river, and where every
demand point is a possible location for a facility. The number
of people N who require the facilities’ services is assumed
to be known at each demand point. This number is typically
very heterogeneous across geographic space. Depending on
the context, there are different strategies for the placement of
the facilities. In this article, we concentrate on the p-median
problem, an important special case, where the objective is to
minimize the average distance between a person’s demand
point and the nearest facility. (A recent summary of the vast
literature on the p-median problem can be found in Ref. [14].)

Let us call the facility locations from left to right
r1, . . . ,rp. These positions are chosen among the demand
points q1, . . . ,qn, which are equidistant (i.e., qi+1 − qi =
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FIG. 1. Illustrative example of the p-median problem along a line.
The population N is known at the demand points q1, . . . ,qn. In this
article, the distance between neighboring demand points is assumed
to be constant. Facilities will be placed on p of these n demand points.
(In the figure, p = 4.) Their locations r1, . . . ,rp are to be determined
so that the average distance between a demand point and the nearest
facility, weighted by N , is minimized. After the facilities have been
located, the line can be divided into p segments s1, . . . ,sp so that the
ith segment corresponds to the service region of the ith facility.

const for i = 1, . . . ,n − 1) along a line (see Fig. 1). If the
population at qi is denoted by Ni , the p-median problem
consists of minimizing the cost function:1

C(r1, . . . ,rp) =
∑n

i=1 Ni minj=1,...,p |qi − rj |∑n
i=1 Ni

. (1)

Because only trips to the nearest facility play a role in
Eq. (1), the line along which the demand points are located
can be partitioned into p segments or service regions. Demand
points belong to the same segment if and only if they share
the same closest facility; see Fig. 1. The length of facility i’s
service region is given by

si =

⎧⎪⎨
⎪⎩

1
2 (r1 + r2) − q1 if i = 1,
1
2 (ri+1 − ri) if i = 2, . . . ,p − 1,
1
2 (rp−1 + rp) − qn if i = p.

(2)

We will now take a closer look at the relation between si and
the population density around facility i.

III. SCALING OF THE LENGTHS
OF THE SERVICE REGIONS

At first sight, it is plausible that the spatial density of facil-
ities should follow the same trend as the population density:
Where there are more people there should be proportionately
more facilities. However, as we will see shortly, the p-median
solution does not follow this rule that would give every facility
an equal number of customers. Instead facilities are less
abundant per capita in the high-demand regions than in the
low-demand regions.

For a spatially heterogeneous population distribution Ni ,
it is difficult to deduce this general trend directly from
Eq. (1). With certain approximations, however, the problem

1Because Ni for a given location problem is constant, we could
in principle directly minimize the numerator in Eq. (1) and ignore
the denominator. We have decided to keep the denominator so that
C equals the average distance. C can then be more easily compared
across different location problems.
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FIG. 2. (a) Under the assumption that the population N (gray
histogram) varies little between neighboring demand points, N can
be approximated by a continuous function ρ (black curve). (b) The
function σ (x) is defined as the length s of the segment covering
position x. Strictly speaking, σ is a piecewise constant function.
However, if the spatial variations in N are sufficiently small, σ can
be approximated by a continuous function (indicated by the dotted
curve).

becomes analytically tractable; essentially, we translate the
line of reasoning developed in Refs. [10] and [11] for the
two-dimensional p-median problem to the one-dimensional
case. First we define the population density ρ(x) which is
the number of people per unit length in the vicinity of x.
Equation (1) can be rewritten as

C(r1, . . . ,rp) =
∫ qn

q1
ρ(x) minj=1,...,p |x − rj | dx∫ qn

q1
ρ(x) dx

, (3)

where we have used the new notation to replace sums
by integrals. If we allow ρ to be piecewise constant, this
expression is still exact, but later it will be more convenient to
approximate ρ with a continuous function [Fig. 2(a)].

Next we define σ (x) to be the length of the segment serviced
by the facility closest to x [see Fig. 2(b)]. The average distance
from facility j to a point x inside its service region is equal
to gjσ (x), where gj depends on the exact location of the
facility. For example, if rj is close to the center of the segment,
gj ≈ 1

4 . In the spirit of a mean-field approximation, we will
now assume that ρ varies little over the size of a segment.
Then we can replace the exact distance, min |x − rj |, in the
numerator of Eq. (3) with its average gjσ (x),

C ≈
∫ qn

q1
ρ(x) g σ (x) dx∫ qn

q1
ρ(x) dx

. (4)

The index j was dropped in Eq. (4) assuming that most
facilities will be close to the center of their service region
so that gj is approximately constant.

Unlike in Eq. (1), the locations rj no longer appear
explicitly in Eq. (4). Instead we have to find the function
σ (x) that minimizes C subject to the constraint that there are
p facilities. This constraint can be expressed as∫ qn

q1

1

σ (x)
dx = p. (5)
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Introducing a Lagrange multiplier α, the problem is equivalent
to finding the zero of the functional derivative

δ

δσ

{
g

∫ qn

q1
ρ(x) σ (x) dx∫ qn

q1
ρ(x) dx

− α

[
p −

∫ qn

q1

1

σ (x)
dx

]}
= 0, (6)

solved by

σ (x) =
√

α
∫ qn

q1
ρ(x ′) dx ′

g ρ(x)
. (7)

The Lagrange multiplier can be eliminated by inserting this
expression into Eq. (5). After some algebra,

σ (x) =
∫ qn

q1

√
ρ(x ′) dx ′

p
√

ρ(x)
∝ [ρ(x)]−1/2. (8)

The lengths of the service regions are thus inversely
proportional to the square root of the population density.
The spatial density of facilities 1/σ increases ∝ ρ1/2, but the
per-capita density 1/(ρ σ ) decreases ∝ ρ−1/2 with growing
population. The square-root scaling is a compromise providing
most services where they are most needed, namely, in the
densely populated regions, but still leaving sufficient resources
in sparsely populated regions where travel distances are longer.
This result implies an economy of scales: In crowded cities
fewer facilities per capita can supply a larger population than
in rural areas. If facilities and demand points are not restricted
to be along a line, but can be placed in two-dimensional
space, the scaling exponent is 2/3 instead of 1/2 [10,11]
(see Sec. VII). However, economies of scale are also predicted
in two dimensions. Empirical studies have indeed reported this
effect for certain classes of real facilities [4,6,7].

IV. EXACT SOLUTION FOR EMPIRICAL
POPULATION DISTRIBUTIONS

The calculation in the previous section assumes that the
population density ρ(x) varies little within a service region.
As we can see from Eq. (8), this implies that the segment
length σ (x) is also a smooth function [Fig. 2(b)]. Real census
data, however, typically reveal strongly varying populations
even on small spatial scales. In Figs. 3(a)–3(d), we show
population numbers near three US interstate highways and the
navigable Mississippi River. The data were generated from
the US census for the year 2000. First, Interstates 5, 10,
and 90 and the Mississippi River were parameterized by arc
length, and markers were placed at regular 1-km intervals.
Then census blocks within 10 km of the highways or the
Mississippi were identified and their population assigned to
the nearest kilometer marker. As is clear from Figs. 3(a)–3(d),
neither of the four populations is a smooth function. Whether
the assumptions behind Eq. (8) are valid is questionable, but it
turns out that the scaling law for the service regions still holds
with surprising accuracy.

To compute the scaling exponent, p = 100 facilities are
placed on each of the four test data sets. The optimal locations
are calculated with the efficient algorithm of Ref. [12]. Their
positions along the roads and the river in geographic space
are shown in Fig. 3(e). The segment lengths si are calculated
for each facility i = 0, . . . ,p. In Fig. 4, si is plotted versus
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FIG. 3. Population N as a function of position x along
(a) Interstate 5, (b) 10, (c) 90, and (d) the navigable part of the
Mississippi River. The small squares below the x axes indicate the
optimal p-median positions of 100 facilities. (e) Map of the roads,
the river, and the facility locations.
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FIG. 4. (Color online) The length of a service region s vs the mean
population 〈N〉 in this service region. Lines indicate least-squares fits
to Eq. (9). Scaling is in good agreement with the analytic prediction
s ∝ 〈N〉−1/2.

the mean value of N inside the segment, denoted by 〈N〉i .2
Ordinary least-squares fits of

log(si) = a log〈N〉i + const (9)

to the data yield slopes a = −0.511 (I5), −0.514 (I10), −0.504
(I90), and −0.496 (Mississippi River), close to the prediction
a = −1/2 of Eq. (8). The correlations are strong; R2 is
consistently bigger than 0.89. Assuming that the residuals
are log-normally distributed, the predicted value −1/2 is
in all cases within the 95% confidence intervals. Thus, the
equivalent of Eq. (8), si ∝ (〈N〉i)−1/2, obtained by replacing
the continuous variables ρ and σ by their discrete counterparts
〈N〉i and si , is a good approximation. This observation
demonstrates that scaling at the exact p-median configuration
is robust even in the presence of strong spatial fluctuations.

V. THE NUMBER OF CONFIGURATIONS
FOR NONMINIMAL COSTS

That the square-root scaling of the service regions is dis-
cernible even for realistically heterogeneous input establishes
a potential link to previous empirical work. Data collected in
Refs. [5–7] suggest, at least for certain classes of facilities,
a sublinear dependence of service facilities on population
numbers. It has been conjectured that the p-median model [4]
or a generalization thereof [5,7] might explain this trend.
Admittedly, we are looking in this article at a simplified
linear geometry. Yet that sublinear scaling is robust even
for substantially noisy input might be viewed as supporting
evidence for this conjecture.

However, there is more to the problem than first meets
the eye. Although it is mathematically convenient to assume

2If both the left and the right boundary, bl and br , of the segment
are half integers, 〈N〉i is defined as

∑�br−1/2	
j=
bl+1/2� Nj/si If bl or br is an

integer, Nbl
/(2si) or Nbr

/(2si) is added to the sum (i.e., half of the
population is assigned to the facility on the right, half to the equally
distant facility on the left).

that facilities are placed to minimize an objective function
such as Eq. (1), it is far from clear that the exact minimum
will be achieved in reality. Decisions about facility locations
are probably more haphazard in real life. For example, site
selections may be swayed by political interests or short-term
fluctuations in property prices, or based on an incomplete
knowledge of the actual demand. Even if the best effort is made
to reach the global optimum, “accidents of history” may keep
the facility locations trapped in a costlier local optimum. It
seems overly optimistic to draw conclusions about the scaling
of real service regions only from the best of all solutions. The
available literature for real facility distributions [5–7], rather
than the numerically optimal ones discussed in Sec. IV, also
justifies cautious skepticism, as some significant differences
to the p-median result have been observed in reality, albeit in
two dimensions.

How many facility configurations with costs near, but not
necessarily equal to, the global minimum exist? There is no
simple way to answer this question. Although the algorithm
of Ref. [12] can find the global optimum very efficiently,
it does not provide information about nonoptimal solutions.
Scanning all possible configurations is out of the question
because their number is too vast. Even for our smallest test data
set (I5) there are ( 2213

100 ) ≈ 3.5 × 10175 different ways to locate

the facilities. The situation is reminiscent of many-particle
systems in physics where one wishes to calculate the large
number of microstates at a certain energy level out of an even
larger number of all conceivable microstates. In that context,
statistical mechanics has developed many powerful numerical
tools. We will build on this analogy in order to estimate the
number of nonoptimal facility locations.

Let us call �(C)dC the number of facility locations with
costs between C and C + dC. The function �(C) plays the role
of the “density of states” in statistical mechanics. As we will
see, � increases very rapidly as C exceeds the minimum Cmin,
so that it will be more convenient to work with its logarithm,
the entropy S(C) = log �(C). Our aim is to calculate S with
Monte Carlo simulations. Several methods exist [15–17]; here
we apply the Wang-Landau algorithm [18]. First, the range of
possible costs is divided into small discrete intervals of length
�C. Then a random walk through the set of facility locations
is performed, and we count, in the form of a histogram, how
often each interval is visited. The main idea behind the Wang-
Landau algorithm is to bias the random walk in such a manner
that all intervals are visited equally often. For such a “flat
histogram” we obtain equally good statistics for all intervals,
an advantage when S(C) is the basis of further calculations.
We describe details of our implementation in the Appendix.

From calculations for four different empirical population
distributions (Fig. 5) it is clear that S is singular at Cmin, the
smallest possible cost. Thus, S increases enormously in the
vicinity of Cmin and the density of states � = exp(S) grows
even more rapidly. The results for four different empirical
population distributions suggest that S follows approximately
the same curve (inset of Fig. 5) if regarded as a function of
(C − Cmin)/n, where n is the total number of demand points
q1, . . . ,qn. Therefore, it appears to be a universal feature
that for all realistic populations a large number of different
possible configurations must be considered if the assumption
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FIG. 5. (Color online) The entropy S (i.e., the logarithm of the
density of states) vs the cost C. The inset shows the same four curves
as the main panel, but with rescaled abscissa (C − Cmin)/n, where n

is the number of demand points.

of optimality is relaxed. This observation raises the question:
Can the scaling relation of Eq. (8) still be observed if facility
locations are not exactly optimal, but are among the numerous
configurations achieving almost but not exactly Cmin?

VI. IS SCALING DETECTABLE
FOR NONMINIMAL COSTS?

If we randomly select a facility configuration with a cost in
the interval [C,C + dC], we can formally obtain the scaling
exponent a from Eq. (8) as follows. First, we log-transform
the segment lengths si and the population density 〈N〉i . Then a
least-squares linear fit to Eq. (9) will be performed to calculate
a. This procedure can be coupled with the Wang-Landau
algorithm so that, at every step in the random walk through
configuration space, we compute a, the cost C, and at the end
of the algorithm the mean value 〈a〉 as a function of C.

The results, shown in Fig. 6(a), indicate that 〈a〉 is approx-
imately −1/2 at the minimum cost Cmin for all four numerical
test sets, as anticipated by our earlier calculations. As the cost
increases, a also increases, indicating a decreasing dependence
of the segment lengths on the population. This behavior makes
sense because the facility locations become more random as
we move away from the optimum. Interestingly, the overall
trend how 〈a〉 increases with C is similar in all four cases.
In particular, the behavior near the minimum is noteworthy
because 〈a〉 increases most rapidly near Cmin. In other words,
the analytic prediction at Cmin, which provides us with the
only easily calculable reference point for a, is unfortunately
at the point where small deviations can also cause the greatest
changes in a.

Together with the least-squares exponent a, we can also
obtain other statistical measures from linear regression, such
as the coefficient of determination R2 [Fig. 6(b)]. It can take
values between 0 and 1; the higher its value, the stronger the
correlation between s and 〈N〉. In our numerical test sets, R2

takes its highest value (≈0.9) at Cmin and decreases as we
move toward higher costs following a slightly sigmoidal curve
toward values around zero. At very large costs, R2 increases
again because the solution is effectively an “obnoxious
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FIG. 6. (Color online) (a) The mean scaling exponent 〈a〉; (b) the
coefficient of determination R2 as a function of the cost C.

facility” location where facilities are in sparsely populated
regions so that s and 〈N〉 are positively (instead of negatively)
correlated. For costs near Cmin, however, an increase in 〈a〉 is
coupled with a reduction in R2.

VII. CONCLUSION

In this article we have studied the one-dimensional p-
median problem. In one dimension, the exact optimum can be
calculated numerically in polynomial time; in two dimensions
[19] and on arbitrary graphs [20], the p-median problem is
NP-complete so that no polynomial-time algorithm is currently
known. Previous empirical studies of scaling in real facility
locations have usually dealt with two-dimensional densities.
The approximate analytic result in one dimension, σ ∝ ρ−1/2

[Eq. (8)], can be easily generalized for arbitrary dimension d,
where the size of a d-dimensional Voronoi cell σ is predicted
to scale as ρ−d/(d+1). The scaling of the facility density 1/σ

with the population density ρ thus remains sublinear in all
dimensions. Numerical optimization in two dimensions, based
on US census data, yields indeed an exponent in excellent
agreement with the predicted exponent a = −2/3 [11].

In 1977 Stephan implicitly proposed that the p-median
model might explain empirical scaling relations between the
area and population density of subnational administrative
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units (e.g., states, provinces, counties) [4]. Although he
later generalized the objective function as more data became
available [5], the notion that facilities may self-organize toward
sublinear scaling has remained attractive, as proved by the
recent rediscovery of Stephan’s model by Um et al. [7].

However, as the work shown here underlines, one has
to be careful when interpreting empirical data. Increased
spatial noise in the facility distribution can lead to different
exponents and reduced correlations. The situation investigated
here portrays only one special scenario how randomness might
be present, namely, as a uniform probability distribution over
all costs in an interval [C,C + dC]. It is also conceivable
that not all configurations within this range are equally
likely, so that the best-fit exponents may behave differently.
We may also replace the p-median model by a different
optimization principle (e.g., competitive facility location such
as the Hotelling model [21]), which can change the exponent
at the optimum. However, we believe that a steep increase in
the number of possible configurations is a generic tendency
of most models that relax the constraint of strict optimization
even to a small degree.
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APPENDIX: WANG-LANDAU ALGORITHM
TO CALCULATE THE DENSITY OF STATES

The Wang-Landau algorithm [18,22] is designed to calcu-
late the density of states �(C) for C in some interval [C1,C2].
First, the interval is divided into small subintervals of length
�C. The key element of the Wang-Landau algorithm is to visit
every subinterval [C,C + �C] with a probability ∝ [�(C)]−1.
Initially, the density of states is of course unknown—this is
why we need the algorithm in the first place—but we will
recursively obtain better estimates for � as the calculation
proceeds. At the beginning we set �(C) = 1 for all intervals
[C,C + �C]. Simultaneously we maintain a histogram H (C),
which counts how often a cost between C and C + �C is
encountered during the course of a random walk. At the
beginning H (C) = 0 for all C.

The random walk through the set of facility locations
proceeds as follows. Starting from an arbitrary initial con-
figuration r = (r1, . . . ,rp), a new set of facility positions
r′ = (r ′

1, . . . ,r
′
p) is generated with probability P (r → r′). In

addition, a uniform random number p ∈ [0,1] is generated.
If p < min(1,�(C)/�(C ′)), the current value of �(C ′) is
multiplied by a constant factor f , H (C) is incremented by 1,

and r′ becomes the next step in the random walk. Otherwise,
the move is rejected, and we increment �(C) and H (C) instead
of �(C ′) and H (C ′). Following Wang’s and Landau’s original
paper, Ref. [18], we initially set f equal to the Euler number
e = 2.71828 . . . When the histogram H (C) is sufficiently
“flat,” f is replaced by its square root (i.e., f ← √

f ). For
practical purposes, the histogram is treated as flat if the
maximum number of visits recorded by H (C) is less than
10% more than the minimum. If this condition is satisfied,
all H (C) are reset to 0, and the procedure is iterated until
f < exp(10−5).

From an intermediate set of facility locations r, we generate
the new set r′ by shifting one random facility one step to the
left or to the right with equal probability. Exceptions are made
if the facility is already at one of the edges of the line or
adjacent to another facility. Let us define ν to be the number
of facilities on the edges (q1 and qn) plus twice the number of
facility pairs occupying neighboring demand points. Then the
nonzero step probabilities are given by

P [(r1,r2, . . . ,rp) → (r1 − 1,r2, . . . ,rp)]

= 1/(2p − ν) if r1 �= q1, (A1)

P [(r1, . . . ,ri−1,ri,ri+1, . . . ,rp)

→ (r1, . . . ,ri−1,ri − 1,ri+1, . . . ,rp)]

= 1/(2p − ν) if ri − 1 �= ri−1,i = 2, . . . ,p, (A2)

P [(r1,. . .,ri−1,ri,ri+1,. . .,rp)

→ (r1,. . .,ri−1,ri + 1,ri+1,. . .,rp)]

= 1/(2p − ν) if ri + 1 �= ri+1,i = 1,. . .,p − 1, (A3)

P [(r1, . . . ,rp−1,rp) → (r1, . . . ,rp−1,rp + 1)]

= 1/(2p − ν) if rp �= qn. (A4)

This set of moves is ergodic and satisfies detailed balance.
In principle, we are able to explore all costs between the

globally minimal Cmin and maximal Cmax. In practice, we
have to reduce the search interval. On one hand, Cmax is
orders of magnitude larger than Cmin, and we are interested
only in � near Cmin. On the other hand, � increases so
quickly that, close to Cmin, the random walk is extremely
unlikely to propose a step decreasing the cost. Therefore, we
confine the random walk to intervals [C1,C2], which become
smaller as C1 approaches Cmin. We interpolate between all
estimates of �, which all differ from the real � by a
multiplicative constant, with a straightforward least-squares
algorithm to obtain a single curve for the entropy S =
log(�) over all measured values of C. There is exactly one
constant left to be fixed because the Wang-Landau algorithm
can calculate the entropy only up to an additive constant.
We adopt the normalization that S = 0 at the extrapolated
maximum.
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