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Abstract. We investigate the statistical mechanics of the periodic one-
dimensional Ising chain when the number of positive spins is constrained to
be either an even or an odd number. We calculate the partition function using
a generalization of the transfer matrix method. On this basis, we derive the
exact magnetization, susceptibility, internal energy, heat capacity and correlation
function. We show that in general the constraints substantially slow down
convergence to the thermodynamic limit. By taking the thermodynamic limit
together with the limit of zero temperature and zero magnetic field, the
constraints lead to new scaling functions and different probability distributions
for the magnetization. We demonstrate how these results solve a stochastic
version of the one-dimensional voter model.
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1. Introduction

For almost one century, the Ising model of ferromagnetism has been a cornerstone of
statistical mechanics [1]. It is one of very few problems that can, at least in one and two
dimensions, be solved exactly [2]. Its applications range from solid state physics [3] over
neuroscience [4] to collective social phenomena [5]. In its basic form the Ising model is
based on the Hamiltonian

E(σ) = −J

N∑
i=1

σiσi+1 − H

N∑
i=1

σi, (1)

where each spin in the vector σ = (σ1, . . . , σN) can take only the values ±1 and we
assume periodic boundary conditions so that σN+1 = σ1. The parameter J is the strength
of interactions between spins and H an external magnetic field. We allow J to take positive
and negative values, thereby considering both the ferro- and antiferromagnetic cases.

Many generalizations of the model have been investigated since Ising’s groundbreaking
publication, for example long-range interactions [6], spin glasses [7] and permitting more
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than two possible spin states [8]. In this article we investigate two different variations of
the Ising model. First, we restrict the number of positive spins

N+(σ) =
1
2

(
N +

N∑
i=1

σi

)
(2)

to an even number. That is, the Hamiltonian is given by equation (1) if N+ is even and
E = ∞ if it is odd. In the second model, equation (1) holds if N+ is odd, whereas an
even N+ is forbidden. We will refer to these two models as ‘even’ or ‘odd’ Ising model
respectively1.

In sections 2–4 we will motivate the even and odd models by showing that they are
equivalent to a simple opinion formation model. In section 5 we demonstrate how the
transfer matrix method for the unconstrained Ising model can be modified to derive
the partition functions of the even and odd models. Section 6 contains a derivation of
the magnetization and susceptibility of both models. We deduce the nearest-neighbour
correlations, internal energy and heat capacity in section 7 and the correlation function
in section 8. As we show in sections 9 and 10, the constrained models approach the
thermodynamic limit in a different manner than the usual unconstrained model when the
temperature and magnetic field simultaneously go to zero. We apply these results to the
opinion formation model in section 11 before summarizing the key findings in section 12.

Before proceeding, we emphasize that N+ is not a fixed number, neither in the even
nor odd model. It is still permitted to take a multitude of values (e.g. in the even model
N+ = 0, 2, 4, . . . , 2�N/2�), but with the restriction that configurations with either odd or
even N+ are excluded. In a Monte Carlo simulation, this restriction could be imposed by
initializing the spins with an even or odd N+ and subsequently flipping two distinct spins
simultaneously in each update. Because such a Markov chain is not ergodically exploring
the configurations of the conventional (i.e. unconstrained) Ising model, we should not
expect that the equilibrium properties are equal. One purpose of this article is to convince
ourselves that the thermodynamic limits (i.e. N → ∞) of the even and odd models are
indeed the limits of the unconstrained model for fixed temperature. However, we will point
out differences when the thermodynamic limit is taken simultaneously with the limit of
zero temperature and zero magnetic field.

2. Motivation: stochastic synchronous voter model

We consider a version of the voter model with stochastic opinion updates. Individuals are
placed on the N sites of a one-dimensional chain with periodic boundary conditions. Each
individual holds one of two possible opinions: ‘black’ or ‘white’. We associate each site i
with a binary variable ωi whose values are

ωi(t) =
{

1 if i is black at time t,
−1 if i is white at time t. (3)

At each discrete time step t, all individuals synchronously update their opinions [9]. (We
will discuss asynchronous updates in section 4.) Each individual randomly chooses one of
1 Sometimes the term ‘odd Ising model’ is used for a spin glass model by Villain [30] which is unrelated to our
work.
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(a) 1 2 3 4 5 61 2 3 4 5 6
+ + + + + +

(b) 1 2 3 4 5 6+ + + + + +

(c) 1 2 3 4 5 6− − − − − −
t, t +2, t+4 ...
1 2 3 4 5 6− − − − − −

t +1, t +3, t +5 ...

Figure 1. The (a), (b) stationary and (c) periodic states of the opinion dynamics
of equation (4) in the limit p+ = 1 with synchronous updates. A site i with
ωi = ±1 is represented by a black (white) square. The spins of the associated
Ising model are shown as + or − signs above the links.

their two nearest neighbours and adopts her opinion with probability p+ or chooses the
opposite opinion with probability p− = 1−p+. Thus, the probability that i’s next opinion
is Ω = ±1 can be expressed as

Pr [ωi(t + 1) = Ω |ωi−1(t), ωi+1(t)]

=




p+ if Ω
2 (ωi−1(t) + ωi+1(t)) = 1,

1
2 if ωi−1(t) + ωi+1(t) = 0,
p− if Ω

2 (ωi−1(t) + ωi+1(t)) = −1,
(4)

where the subindices are interpreted modulo N to satisfy the periodic boundary
conditions.

What are the equilibrium properties of this model? For example, how many pairs of
neighbours will on average disagree? And what are the typical fluctuations around this
average value? We will demonstrate that these questions can be analytically answered
by mapping the problem to an Ising model on the dual lattice with an even number of
negative spins. (We will explain the origin of the even-numbered constraint in section 3.)
For even (odd) N , the opinion model will consequently map onto the even (odd) Ising
model.

Let us first clarify that the variables ωi cannot directly be interpreted as Ising spins
σi. For simplicity’s sake, let us assume for a moment that N is even. In the limiting case
of p+ = 1, there are two stationary states where all sites have reached either a black or
white consensus (figures 1(a) and (b)). For synchronous updates there is, however, also a
periodic state where the opinions alternate in space [10]: if all odd sites are black and all
even sites white at time t, all opinions are inverted at t+1 and return to the original state
at t+2 (figure 1(c)). Unlike in the zero-temperature Ising model, we thus have apparently
more than two ground states.

We can, however, establish a connection to the Ising model if we assign spins σi to
the i-th link (i.e. between the sites i and i + 1) rather than the sites themselves. We set
σi = 1 if both sites connected by the link agree and σi = −1 if they disagree,

σi = ωiωi+1. (5)

doi:10.1088/1742-5468/2015/03/P03004 4
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In terms of σi, both consensus states are mapped to maximally positive magnetization,
whereas in the alternating state all spins are negative. Thus, the limit p+ = 1 can be
mapped to the zero-temperature ferromagnetic Ising model. We will now argue that for
any 0 < p+ < 1, there is a finite-temperature Ising model whose equilibrium properties
are those of the original opinion dynamics given by equation (4).

3. Mapping the synchronous voter model to an odd or even Ising model

Suppose that the opinions at time t are ω
(A)
1 , . . . , ω(A)

N . What is the probability Pr(A → B)
to find the opinions ω

(B)
1 , . . . , ω(B)

N at time t + 1? Assuming that the probabilities in
equation (4) are independent for all i,

Pr(A → B) =
N∏

i=1

Pr
[
ω

(B)
i

∣∣∣ω(A)
i−1, ω

(A)
i+1

]
. (6)

We want to show that
Pr(A → B)
Pr(B → A)

= eβ(E(A)−E(B)), (7)

where E(A) is the energy of the spins σ
(A)
i = ω

(A)
i ω

(A)
i+1 in the Ising model without magnetic

field,

E(A) = −J
N∑

i=1

σ
(A)
i σ

(A)
i+1, (8)

and similarly for state B. Furthermore,

β = −
ln

(
2
√

p+p−
)

2J
(9)

so that every p+ can be mapped to a temperature (kBβ)−1, where kB is the Boltzmann
constant. Equation (7) is the detailed balance condition for the Ising model [11].
Consequently, the equilibrium properties of the spins σi can be deduced from the model’s
partition function.

Before deriving equation (7), we emphasize that not all spin configurations are possible.
The number of negative spins must be even; otherwise the opinions ωi would change an
odd number of times as we go once through the chain so that we would not end up with the
same opinion with which we started. The restriction to an even number of negative spins
changes the partition function of this model compared to the unconstrained Ising model.

First, however, we still need to justify equation (7). Let us denote the number of
neighbouring spins with opposite signs in states A and B by n(A) and n(B) respectively.
Because E(A) = J

(
2n(A) − N

)
and E(B) = J

(
2n(B) − N

)
, we can rewrite the right-hand

side of equation (7) as

eβ(E(A)−E(B)) = e2βJ(n(A)−n(B)). (10)
Because of equations (4) and (6), only factors p+, 1

2 and p− can appear in Pr(A → B)
and Pr(B → A),

Pr(A → B) = pa1
+ pa2

− /2a3 , (11)

Pr(B → A) = pb1
+pb2

− /2b3 . (12)

doi:10.1088/1742-5468/2015/03/P03004 5
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Assuming p+ �= 1
2 , the exponents ai, bi are uniquely determined. (If p+ = 1

2 and thus
β = 0, equation (7) is trivially correct.) There is one factor for each site, so

a1 + a2 + a3 = b1 + b2 + b3 = N . (13)

Because σiσi+1 = −1 if and only if ωi + ωi+2 = 0, equation (4) implies

a3 = n(A), (14)

b3 = n(B). (15)

From equation (4) it also follows that

a1 − a2 =
1
2

∑
i

ω
(B)
i

(
ω

(A)
i−1 + ω

(A)
i+1

)
, (16)

b1 − b2 =
1
2

∑
i

ω
(A)
i

(
ω

(B)
i−1 + ω

(B)
i+1

)
. (17)

Splitting the sums and shifting the summation index shows that the sums in equations (16)
and (17) are equal, thus

a1 − a2 = b1 − b2. (18)

Combining equations (13)–(15) and (18),

a2 = N − a1 − n(A), (19)

b1 = a1 +
1
2
(
n(A) − n(B)) , (20)

b2 = N − a1 − 1
2
(
n(A) + n(B)) , (21)

so that, by plugging into equations (11) and (12), we obtain
Pr(A → B)
Pr(B → A)

= (2
√

p+p−)n(B)−n(A)
. (22)

Comparing equations (9), (10) and (22) proves equation (7).

4. The voter model with random asynchronous updates

Not only the voter model with perfectly synchronous updates of opinions can be mapped
to an even or odd Ising model. We will now argue that, by defining the spins as in
equation (5), we can also interpret asynchronous updates of randomly selected single
opinions in terms of an Ising Hamiltonian. While the synchronous case, as shown in the
previous section, corresponds to a positive spin interaction J and zero magnetic field H,
the asynchronous case leads to J = 0 and, in general, H �= 0 for the following reason.

Suppose opinion ωi is chosen to be updated. The probability to have opinion Ω in
the next time step is given by equation (4) while all other opinions remain unchanged.
Then the only spins affected are σi−1 and σi so that we can ignore the rest of the chain.
If ωi changes between states A and B, then we can distinguish the three cases depicted
in figure 2: either

doi:10.1088/1742-5468/2015/03/P03004 6
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A B

(i) i-1 i i+1 i-1 i i+1
... + − ... ... − + ...

Pr = 1/2

Pr = 1/2

(ii) i-1 i i+1 i-1 i i+1
... − − ... ... + + ...

p+

p−

(iii) i-1 i i+1 i-1 i i+1
... ... ...+ + − − ...

p−

p+

Figure 2. Transition probabilities for asynchronous updates. Depicted are three
representative cases where only opinion i changes between states A and B. All
other cases can be generated by inverting all opinions (from white to black and
vice versa) and/or interchanging the order of the chain so that i − 1 and i + 1
trade places.

(i) Pr(A → B) = Pr(B → A) = 1
2 and σ

(A)
i + σ

(A)
i+1 = σ

(B)
i + σ

(B)
i+1 = 0 or

(ii) Pr(A → B) = p+ and Pr(B → A) = p− and σ
(A)
i + σ

(A)
i+1 = −σ

(B)
i − σ

(B)
i+1 = −2 or

(iii) Pr(A → B) = p− and Pr(B → A) = p+ and σ
(A)
i + σ

(A)
i+1 = −σ

(B)
i − σ

(B)
i+1 = 2.

In summary, we can write all of these cases as

Pr(A → B)
Pr(B → A)

=
(

p+

p−

)− 1
4

(∑
σ

(A)
i −

∑
σ

(B)
i

)

, (23)

which is of the form of equation (7) with the energy E = −H
∑

i σi and inverse
temperature

β =
ln(p+/p−)

4H
. (24)

If p+ ∈ (1
2 , 1), we must have H > 0 to obtain a positive temperature. Asynchronous

opinion updates then tend to favour the states depicted in figures 1(a) and (b) where the
spins are all positive. Generally, the states in figure 1(c) are suppressed when p+ > 1/2
and the dynamic rule mixes synchronous and asynchronous updates (e.g. by updating a
fraction of the opinions in every update as in [12]). The opposite is true for p+ < 1/2 where
asynchronous updates generate sequences of alternating opinions and suppress unanimity.
All cases, however, have in common that the periodic boundary conditions in the opinions
generate an even number of negative spins, resulting in an even (odd) Ising model for even
(odd) N .

Whether synchronous, asynchronous or partially synchronous updates are more
realistic depends on the situation one wishes to model. Asynchronous updates have a
long tradition in physics (e.g. the Glauber or Metropolis rules for dynamic Ising models),

doi:10.1088/1742-5468/2015/03/P03004 7
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but synchronous updates, especially in the context of stochastic cellular automata [13],
have also been investigated (for example in [14–16]). If agents can only make decisions at
discrete times (e.g. only at the end of a business day or if biological populations exhibit
strongly peaked cyclic activity [17]), then synchronous or partially synchronous updates
are more applicable. Here we do not intend to argue for any particular update rule.
Generally, one has to be humble about social or economic interpretations of such simple
rules [18] because true opinion dynamics is far more complex. Our focus here is rather on
the model’s structural properties in order to motivate how the even and odd Ising models
can arise from another two-state model.

5. Partition function

We denote the partition function for the even and odd Ising model by Ze and Zo

respectively,

Ze =
∑
σ with

even N+(σ)

e−βE(σ), (25)

Zo =
∑
σ with

odd N+(σ)

e−βE(σ). (26)

If we associate a spin σi = 1 with the bra vector 〈+1| = (1, 0) and σi = −1 with
〈−1| = (0, 1), we can write Ze with the transfer matrix of the unconstrained model [19]

P =
(

eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
(27)

as

Ze =
∑
σ with

even N+(σ)

〈σ1|P |σ2〉 〈σ2|P |σ3〉 . . . 〈σN |P |σ1〉

= Tr


 ∑

σ with
even N+(σ)

|σ1〉 〈σ1|P . . . |σN〉 〈σN |P


 . (28)

Similarly,

Zo = Tr


 ∑

σ with
odd N+(σ)

|σ1〉 〈σ1|P . . . |σN〉 〈σN |P


 . (29)

Let us define

Me =
∑
σ with

even N+(σ)

|σ1〉 〈σ1|P . . . |σN〉 〈σN |P, (30)

Mo =
∑
σ with

odd N+(σ)

|σ1〉 〈σ1|P . . . |σN〉 〈σN |P. (31)

doi:10.1088/1742-5468/2015/03/P03004 8
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Induction on N proves(
Me, Mo

Mo, Me

)
=

(
|−1〉 〈−1|P, |+1〉 〈+1|P
|+1〉 〈+1|P, |−1〉 〈−1|P

)N

. (32)

With the definition

Q =
(

|−1〉 〈−1|P, |+1〉 〈+1|P
|+1〉 〈+1|P, |−1〉 〈−1|P

)
(33)

=




0 0 eβ(J+H) e−βJ

e−βJ eβ(J−H) 0 0
eβ(J+H) e−βJ 0 0

0 0 e−βJ eβ(J−H)


 ,

we can write

Ze = Tr (Me) =
1
2
Tr

(
QN

)
. (34)

To simplify the notation further, we introduce

x = βH, (35)

y = βJ . (36)

The eigenvalues of Q are then

λ1,2 = ey
(
cosh x ±

√
sinh2 x + e−4y

)
, (37)

λ3,4 = ey
(
− sinh x ±

√
cosh2 x − e−4y

)
. (38)

Consequently,

Ze =
1
2
(
λN

1 + λN
2 + λN

3 + λN
4

)
. (39)

We can derive Zo as follows. The eigenvalues λ1,2 are also the eigenvalues of P and therefore
the partition function of the unconstrained Ising model is Zu = λN

1 + λN
2 . Moreover

Zu = Ze + Zo so that

Zo =
1
2
(
λN

1 + λN
2 − λN

3 − λN
4

)
. (40)

Because λ1 is the leading eigenvalue, we find in the thermodynamic limit (i.e. N → ∞)
with fixed x and y that Ze ∝ Zo ∝ Zu ∝ λN

1 . As a consequence, all equilibrium properties
of the even and odd Ising models converge to the same limits as the unconstrained model.
However, we will analytically derive in section 9 different scaling limits for N → ∞ when
temperature and magnetic field go to their critical value (i.e. zero) such that Ne−2y and
N sinh x are asymptotically constants. For this purpose, it will be instructive to derive
first some exact formulae for finite N .

6. Magnetization and susceptibility

We first calculate the mean magnetization per spin

〈m〉 ≡ 〈
∑

i σi〉
N

=
1
N

∂

∂x
ln Z, (41)

doi:10.1088/1742-5468/2015/03/P03004 9

http://dx.doi.org/10.1088/1742-5468/2015/03/P03004


J. S
tat. M

ech. (2015) P
03004

The Ising chain constrained to an even or odd number of positive spins

where Z is the partition function of the model in question and the angle brackets denote
the ensemble average. With the auxiliary functions

s1(x, y) =
sinh x√

sinh2 x + e−4y
, (42)

c1(x, y) =
cosh x√

cosh2 x − e−4y
, (43)

we can write equation (41) as

〈m〉e,o(x, y) =
s1

(
λN

1 − λN
2

)
∓ c1

(
λN

3 − λN
4

)
λN

1 + λN
2 ± λN

3 ± λN
4

, (44)

where the upper signs apply to the even and the lower signs to the odd model.
In the special case x = 0, applicable to the synchronous voter model, we insert the

eigenvalues from equations (37) and (38) (figure 3(a))

〈m〉e,o(x = 0, y)

=

{ 〈m〉u(x = 0, y) = 0 if N is even,

∓ ey

coshN y+sinhN y

(
sinh(2y)

2

)(N−1)/2
if N is odd.

(45)

Hence, for odd N , even when there is no external magnetic field (i.e. H = 0), the
magnetization is generally different from zero. This phenomenon can be intuitively
explained. The constraint of an even number of positive spins prevents for odd N
a ground state with perfectly aligned positive spins. However, the state with σ1 =
. . . = σN = −1 is permitted and therefore the mean magnetization in the limit
y → ∞ is −1. The same argument applies with opposite signs to the odd model.
In the antiferromagnetic limit (i.e. y → −∞) the neighbouring spins prefer to be in
opposite directions, but an odd N forces at least one pair to point in the same direction
and thus me,o = (−1)(N±1)/2/N .

The relevant case for the asynchronous voter model is y = 0 where the interactions
between spins are negligible compared to the external magnetic field,

〈m〉e,o(x, y = 0) =
sinh(2x)

2
× coshN−2 x ± (−1)N sinhN−2 x

coshN x ± (−1)N sinhN x
. (46)

The functions are plotted in figures 3(b) and (c). In the unconstrained model the
magnetization 〈m〉u(x, y = 0) = tanhx is independent of N . However, in the even and
odd models, the constraints on the number of spins acts as an effective interaction so that
the partition function does not factorize although J = 0. Consequently, the magnetization
of equation (46) depends on N .

The fluctuations in the magnetization are measured by the susceptibility per spin

χ ≡ βN
(
〈m2〉 − 〈m〉2) =

∂〈m〉
∂H

. (47)

Taking the derivative of equation (44) for general x and y is in principle possible, but
leads to rather lengthy expressions. We focus here instead directly on the two special
cases x = 0 and y = 0.
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(c)

Figure 3. The mean magnetization 〈me〉 (a) as a function of y when x = 0, (b)
as a function of x when y = 0. (c) The mean magnetization 〈mo〉 for y = 0.

For x = 0 (i.e. in the absence of an external magnetic field),

χe,o(x = 0, y)

=




βe2y(coshN y−sinhN y±2−N/2N sinhN/2−1(2y))
(coshN/2 y±sinhN/2 y)2 if N is even,

βe2y(cosh2N y−sinh2N y−21−NN sinhN−1(2y))
(coshN y+sinhN y)2 if N is odd,

(48)
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Figure 4. The susceptibility χ divided by the inverse temperature β for (a), (b)
zero magnetic field H as a function of y = βJ and (c), (d) zero spin interaction
J as a function of x = βH. Panels (a) and (c) show the results for the even Ising
model, (b) and (d) for the odd model.

compared to χu = βe2y(coshN y−sinhN y)/(coshN y+sinhN y). Plotting χe,o in figures 4(a)
and (b), the most striking feature for odd N is limy→∞ χe,o = 0, whereas the unconstrained
Ising model (and the even model for even N) reaches in this limit its maximum
susceptibility βN . The reason is that, as already mentioned, the even and odd models for
odd N only have one ground state each, but the unconstrained model has two.

For the odd model with even N we observe yet another interesting phenomenon. The
susceptibility reaches its maximum in the limit y → ∞, but with a smaller value than the
unconstrained or even models, namely limy→∞ χo = β(N2 − 4)/(3N). The explanation is
that the perfectly aligned ground states of the unconstrained models are not permitted.
Therefore, the states of minimum energy in the odd model are the first excited states
of the unconstrained model whose magnetization is not confined to the extreme values
m = ±1.

In the case of no internal interactions (i.e. y = 0),

χe,o(x, y = 0)

= β

(
coshN−2 x ∓ (−1)N sinhN−2 x

coshN x ± (−1)N sinhN x
± (−1)NN sinhN−2(2x)

2N−2
(
coshN x ± (−1)N sinhN x

)2

)
, (49)
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while χu = β cosh−2 x. We plot χe,o in figures 4(c) and (d). For odd N , they satisfy
χe(x, 0) = χo(−x, 0) because in this case the odd model is equivalent to the even
model with flipped signs of spins and magnetic field. If N is even, χe and χo are
intrinsically symmetric, but with larger values in the tails of the even model because
χe/χo → 3N/(N − 2) as |x| → ∞ and y = 0.

7. Nearest-neighbour correlations, internal energy and heat capacity

If we replace in equation (41) the partial derivative with respect to x by differentiation
with respect to y, we obtain the mean nearest-neighbour correlation

〈g1〉 ≡ 1
N

〈∑
i

σiσi+1

〉
=

1
N

∂

∂y
ln Z. (50)

If we define the functions

s2(x, y) = 2e−3y
(
sinh2 x + e−4y

)−1/2 , (51)

c2(x, y) = 2e−3y
(
cosh2 x − e−4y

)−1/2 , (52)

then

〈g1〉e,o(x, y) = 1 +
s2

(
λN−1

2 − λN−1
1

)
± c2

(
λN−1

3 − λN−1
4

)
λN

1 + λN
2 ± λN

3 ± λN
4

. (53)

Without external magnetic field,

〈g1〉e,o(x = 0, y) =




1 − coshN/2−1 y∓sinhN/2−1 y

ey(coshN/2 y±sinhN/2 y) if N is even,

〈g1〉u(x = 0, y) = 1 + sinhN−1 y−coshN−1 y

ey(coshN y+sinhN y) if N is odd.
(54)

If N is odd, 〈g1〉e,o(x = 0, y) is equal to the correlation in the unconstrained model for the
following reason. The spin configurations in the unconstrained model can be divided into
two sets: one set containing all configurations of the even model and another set with all
odd-numbered states. We can map every element in one set uniquely to the configuration
in the other set that has all spins inverted. Because the sum of equation (50) is invariant
if all spins are simultaneously flipped, the average correlations must be equal in both sets.
The same argument cannot be applied to even N , however, because inverting the spins in
the even or odd set generates another spin in the same set. As a consequence, 〈g1〉e and
〈g1〉o are in this case different functions.

With a magnetic field, but with vanishing spin interactions,

〈g1〉e,o(x, y = 0) = 1 − coshN−2 x ∓ (−1)N sinhN−2 x

coshN x ± (−1)N sinhN x
, (55)

compared to 〈g1〉u = tanh2 x. For odd N , we find 〈g1〉e(x, 0) = 〈g1〉o(−x, 0) for the same
reason as discussed after the corresponding equation (49) for the susceptibility. We also
find again that, for even N , 〈g1〉e(x, 0) = 〈g1〉e(−x, 0) and 〈g1〉o(x, 0) = 〈g1〉o(−x, 0).
Expanding equation (55), however, shows that the limits for |x| → ∞ and even N are
different: 〈g1〉e → 1, but 〈g1〉o → 1−4/N . The intuition behind this result is that a strong
magnetic field can perfectly align the spins in the even, but not in the odd model.
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Closely related to the nearest-neighbour correlations is the internal energy (i.e.
ensemble average of the Hamiltonian) per spin

U ≡ 〈E〉
N

= − 1
N

∂

∂β
ln Z. (56)

In general, the calculation yields rather lengthy expressions. However, if H = 0, then
Ue,o = −J〈g1〉e,o(x = 0, y). If, on the other hand, J vanishes, then Ue,o = −H〈m〉e,o(x, y =
0). Using our earlier results of equations (46) and (54),

Ue,o(x = 0, y) =




J

(
coshN/2−1 y∓sinhN/2−1 y

ey(coshN/2 y±sinhN/2 y) − 1
)

if N is even,

Uu(x = 0, y) = J

(
coshN−1 y−sinhN−1 y

ey(coshN y+sinhN y) − 1
)

if N is odd,
(57)

U e,o(x, y = 0) = − H sinh(2x)
2

× coshN−2 x ± (−1)N sinhN−2 x

coshN x ± (−1)N sinhN x
., (58)

while Uu(x, y = 0) = −H tanh x.
Taking another derivative of lnZ with respect to β gives us the heat capacity per spin,

which measures the fluctuations in the energy,

C ≡ kBβ2

N

(
〈E2〉 − 〈E〉2) = −kBβ2∂U

∂β
(59)

For vanishing H, we can use (∂U)/(∂β) = J(∂U)/(∂y) and equation (57). If J = 0, then
C = kBβH2χ, so the heat capacity follows directly from equation (49),

Ce,o(x = 0, y) (60)

=




kBβ2J2

coshN/2 y ± sinhN/2 y

×
(

coshN/2−2 y ∓ sinhN/2−2 y ± N sinhN/2−2(2y)
2N/2−1(coshN/2 y±sinhN/2 y)

)
if N is even,

Cu(x = 0, y) = kBβ2J2

coshN y+sinhN y

×
(

coshN−2 y − sinhN−2 y + N sinhN−2(2y)
2N−2(coshN y+sinhN y)

)
if N is odd,

Ce,o(x, y = 0)

= kBβ2H2

(
coshN−2 x ∓ (−1)N sinhN−2 x

coshN x ± (−1)N sinhN x
± (−1)NN sinhN−2(2x)

2N−2
(
coshN x ± (−1)N sinhN x

)2

)
, (61)

approaching Cu(x, y = 0) = kBβ2H2 cosh−2(x) in the thermodynamic limit.

8. Correlation function

We can generalize the calculation in the previous section to find the correlation between
k-th nearest neighbours. For this purpose we make the spin interactions J in an auxiliary

doi:10.1088/1742-5468/2015/03/P03004 14

http://dx.doi.org/10.1088/1742-5468/2015/03/P03004


J. S
tat. M

ech. (2015) P
03004

The Ising chain constrained to an even or odd number of positive spins

Hamiltonian Ẽ dependent on the position i, but for simplicity’s sake we drop the magnetic
field,

Ẽ(σ) = −
N∑

i=1

Jiσiσi+1. (62)

Applying the same line of reasoning that led us to equation (34), we can show that the
partition function for the Hamiltonian Ẽ in the case of even N+ is

Z̃e =
1
2
Tr

(
N∏

i=1

Qi

)
, (63)

where

Qi =




0 0 eβJi e−βJi

e−βJi eβJi 0 0
eβJi e−βJi 0 0
0 0 e−βJi eβJi


 (64)

plays the role of the transfer matrix of equation (33). The matrices Qi do not commute
and therefore we cannot simultaneously diagonalize them for computing the trace in
equation (63). However, the product QiQi+1 commutes with Qi+2Qi+3. These products
are diagonalized as RQiQi+1R by the matrix of eigenvectors

R =
1
2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 = R−1, (65)

and the corresponding eigenvalues are

(RQiQi+1R)11 = 4 cosh(βJi) cosh(βJi+1), (66)

(RQiQi+1R)22 = 4 sinh(βJi) sinh(βJi+1), (67)

(RQiQi+1R)33 = 4 sinh(βJi) cosh(βJi+1), (68)

(RQiQi+1R)44 = 4 cosh(βJi) sinh(βJi+1). (69)

If N is even, it follows that

Z̃e,even N = 2N−1
( N∏

i=1

cosh(βJi) +
N∏

i=1

sinh(βJi)

+
N/2∏
i=1

cosh(βJ2i−1) sinh(βJ2i) +
N/2∏
i=1

sinh(βJ2i−1) cosh(βJ2i)
)
, (70)

while for odd N the partition function is half of the unconstrained model’s partition
function

Z̃e,odd N =
1
2
Z̃u = 2N−1

(
N∏

i=1

cosh(βJi) +
N∏

i=1

sinh(βJi)

)
. (71)

doi:10.1088/1742-5468/2015/03/P03004 15

http://dx.doi.org/10.1088/1742-5468/2015/03/P03004


J. S
tat. M

ech. (2015) P
03004

The Ising chain constrained to an even or odd number of positive spins

For the odd model, we can apply Z̃o = Z̃u − Z̃e. The disconnected correlation function
〈gk〉 can now be computed as

〈gk〉 =
1
N

〈∑
i

σiσi+k

〉
=

[
1

βkZ̃

∂

∂J1

∂

∂J2
. . .

∂

∂Jk

Z̃

]
J1=...=JN=J

(72)

with the final result

〈gk〉e,o =




coshN−k y sinhk y+sinhN−k y coshk y±21−N/2 cosh(2y) sinhN/2−1(2y)

(coshN/2 y±sinhN/2 y)2

if N even, k odd,
coshN−k y sinhk y+sinhN−k y coshk y±21−N/2 sinhN/2(2y)

(coshN/2 y±sinhN/2 y)2 if N even, k even,

〈gk〉u = coshN−k y sinhk y+sinhN−k y coshk y

coshN y+sinhN y
if N odd.

(73)

Taking the limit N → ∞ while keeping y and k fixed, all three cases have the
same asymptotic value limN→∞〈gk〉e,o,u = tanhk y and the correlation length is hence
ξ = − ln(tanh y). The divergence at y = 0 can be expressed as a power law in the reduced
temperature [20]

Tr = e−2y (74)

because near Tr = 0

ξ ≈ 2Tr
−1 ∝ T−ν

r , (75)

where the critical correlation length exponent satisfies ν = 1 in the unconstrained, even
and odd models.

9. Approach to the thermodynamic limit

It is not surprising that ν does not depend on whether we constrain the number of positive
spins to even or odd values or have no such constraint. We have already pointed out the
reason after equation (40): the thermodynamic limit at fixed temperature is determined by
the leading eigenvalue λ1 and this eigenvalue is common to the transfer matrices P and Q.
The leading-order correction to the magnetization, however, depends on the eigenvalue
with the second largest absolute value. If we call this eigenvalue λs, then the average
magnetization for a chain of length N behaves asymptotically as

〈m〉 = s1 +
(

λs

λ1

)N−1
∂

∂x

(
λs

λ1

)
+ higher order terms, (76)

obtained by expanding the logarithm in equation (41) and inserting the definition of s1

from equation (42). In the unconstrained case we have λs = λ2, but for the constrained
models one of the other two eigenvalues of the matrix Q has a larger absolute value so
long as x �= 0 or y �= 0. For example, if x and y are both positive, then λs = λ4 and the
leading-order corrections for the unconstrained, even and odd models are

〈m〉u − s1 = −2s1

(
λ2

λ1

)N

, (77)

〈m〉e − s1 = −〈m〉o,N + s1 = (c1 − s1)
(

λ4

λ1

)N

, (78)
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Figure 5. The difference between the magnetization 〈m〉 and s1 for a finite chain
of length N , x = 0.5 and y = 1. We note that s1, defined in equation (42),
is the thermodynamic limit of 〈m〉. Circles, + and × symbols are exact
results. The solid and dashed lines are the leading-order approximations of
equations (77) and (78). The constrained models converge much more slowly
than their unconstrained counterpart.

respectively (see equation (43) for the definition of c1). In general, |λ4| is considerably
larger than |λ2|. As a consequence, the leading-order correction decays much more slowly
in the constrained cases than in the unconstrained one (figure 5).

The difference in the asymptotic approach to the thermodynamic limit becomes even
more apparent if we take the limit N → ∞ while simultaneously J → ∞ (so that Tr → 0)
and H → 0 (so that x → 0) in such a way that the products

t ≡ NTr, (79)

h ≡ N sinh x (80)
are constants. In the thermodynamic limit the magnetic field H scales ∝ N−1. We
could have alternatively defined h = Nx to make this inverse proportionality more
apparent, but the definition of equation (80) is a little bit more convenient when
substituting the hyperbolic functions in equations (37) and (38). After applying the
formula limN→∞(1 + z/N)N = ez to equations (39) and (40), we obtain the partition
functions for large N ,

Zu = 2NN/2t−N/2 cosh
√

h2 + t2, (81)

Ze,o =
{

NN/2t−N/2
(
cosh

√
h2 + t2 ± cosh h

)
if N is even,

NN/2t−N/2
(
cosh

√
h2 + t2 ∓ sinh h

)
if N is odd.

(82)

All thermodynamic quantities can now be derived from the partition function by taking
the appropriate derivatives, for example 〈m〉 = ∂(ln Z)/∂h. Alternatively, we can also
take the thermodynamic limits of equations (44), (48) and (60). We tabulate the results
in table 1.

It is instructive to compare these equations with the canonical finite-size scaling forms,
for example for the susceptibility

χ(h = 0) ∝ Nγ/νfχ(N1/νt). (83)
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Table 1. Thermodynamic properties for N → ∞ and constant t, h (defined in
equations (79) and (80)).

Unconstrained Even model Odd model

〈m〉 h tanh
√

h2+t2√
h2+t2

h√
h2+t2

sinh
√

h2+t2+sinh h

cosh
√

h2+t2+cosh h

h√
h2+t2

sinh(
√

h2+t2)−sinh h

cosh(
√

h2+t2)−cosh h
if N is even,

h√
h2+t2

sinh
√

h2+t2−cosh h

cosh
√

h2+t2−sinh h

h√
h2+t2

sinh(
√

h2+t2)+cosh h

cosh(
√

h2+t2)+sinh h
if N is odd.

χ(h=0)
β

N tanh t
t N

(
tanh( t

2)
t + 1

2 cosh2( t
2)

)
N

(
coth( t

2)
t − 1

2 sinh2( t
2)

)
if N is even,

N
( tanh t

t − 1
cosh2 t

)
if N is odd.

C(h=0)
kBβ2J2

4t
N

(
tanh t + t

cosh2 t

) 2t
N

(
2 tanh

(
t
2

)
+ t

cosh2( t
2)

)
2t
N

(
2 coth

(
t
2

)
− t

sinh2( t
2)

)
if N is even

4t
N

(
tanh t + t

cosh2 t

)
if N is odd.
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0
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0.4
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χ /(
β N
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odd model, even N
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Figure 6. The scaling function of the susceptibility χ(h = 0) in the limit N → ∞,
β → ∞ with finite t = Ne−2βJ . The scaling functions for the unconstrained, even
and odd models exhibit different behaviour, especially if t is small.

While we find that γ = ν = 1 for all of the cases listed in table 1 (see also our remark after
equation (75)), the scaling functions fχ (plotted in figure 6) are fundamentally different.

10. The probability distribution of the magnetization

Because of the differences between the unconstrained, even and odd models in table 1, one
may wonder how the probability distribution of the magnetization [21–24] differs; after all,
〈m〉 and χ are essentially the mean and variance of this distribution. We repeat here the
arguments developed by Antal et al [25] for the unconstrained model with zero magnetic
field. We denote the total magnetization by M ≡

∑
i σi and the number of domain walls

(i.e. boundaries between stretches of contiguous positive and negative spins) by 2d; it
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must be an even number because of the periodic boundary conditions. The main task is
to count the number Ω(d, M) of configurations with 2d domain walls and magnetization
M . Their probability P (d, M) in thermal equilibrium with H = 0 will then follow from

P (d, M) =
e(N−4d)y

Z
Ω(d, M), (84)

whose marginal distribution

P (M) =
∑

d

P (d, M) (85)

is the probability distribution we are looking for.
We can find Ω(d, M) with the following combinatorial argument. Let us assume that

there are N+ positive and N− = N −N+ negative spins and that the first spin is positive.
We could for example have

w0+︸︷︷︸+ + w1−︸︷︷︸− − −w2+︸︷︷︸+ + . . . + + w2d−1−︸ ︷︷ ︸w2d + ++, (86)

where we marked the positions of the domain walls by w1, . . . , w2d. At the periodic
boundary between the first and last spin there may not be a domain wall (in the example
above there is not), but we will always symbolically put w0 in front of the chain. We
now mentally glue w0, . . . , w2d−1 to the next spin in the chain (indicated by the braces in
equation (86)). In this manner, d negative spins are attached to domain walls, whereas
the remaining N− − d can be freely placed in the d negative domains. The well-known
stars-and-bars theorem [26] implies that there are (N−−1

d−1 ) different ways to distribute the
negative spins.

The positive spins require a little more care, because there may not be a positive spin
trailing the domain wall w2d. We can account for this exception by not attaching w2d to
the following spin. There are thus d positive spins attached to w0, w2, . . . , w2d−2, while the
remaining N+ − d positive spins can be freely distributed into d + 1 segments, namely
the positive intervals following w0, w2, . . . , w2d. According to the stars-and-bars theorem,
there are (N+

d
) different possibilities.

Because the positive and negative spins are placed independently of each other, the
number of configurations is simply the product of the binomial coefficients (N−−1

d−1 )(N+
d

). If
we had started the chain with a negative spin, we would have obtained the same expression
with the subscripts + and − interchanged, so that

Ω(d, M) =
(

N− − 1
d − 1

)(
N+

d

)
+

(
N+ − 1
d − 1

)(
N−

d

)
. (87)

This expression from Antal et al [25] is equally valid for the unconstrained, even and
odd models. The constraints only enter in the permitted values for M whose consequence
becomes apparent when we take the continuum limit. To this end, we take N → ∞ for a
fixed value of d and write m = M/N , so that

Ω(d, m) =
N2d−1

22d−2 d! (d − 1)!
(
1 − m2)d−1 . (88)

For the time being let us assume that |m| �= 1 and thus d �= 0. We can insert equation (88)
into equations (84) and (85), but have to bear in mind that changing from the discrete
variable M to the continuous variable m generates an additional prefactor, which we will

doi:10.1088/1742-5468/2015/03/P03004 19

http://dx.doi.org/10.1088/1742-5468/2015/03/P03004


J. S
tat. M

ech. (2015) P
03004

The Ising chain constrained to an even or odd number of positive spins

call N/∆M ,

P (m) =
4NN/2

tN/2∆MZ(1 − m2)

∞∑
d=1

t2d(1 − m2)d

22dd!(d − 1)!
. (89)

Here ∆M is the step size between consecutive values of M (i.e. ∆M = 2 in the
unconstrained, ∆M = 4 in the even and odd models) and t is defined in equation (79). As
noticed in [25], the infinite series in equation (89) can be expressed in terms of a modified
Bessel function of the first kind thanks to the identity [27]

I1(z) =
∞∑

d=0

z2d+1

22d+1d!(d + 1)!
(90)

and therefore

P (m) =
2NN/2I1

(
t
√

1 − m2
)

tN/2−1∆MZ
√

1 − m2
(91)

for |m| < 1.
At the boundaries of this interval (i.e. |m| = 1) there are contributions proportional

to Dirac delta functions. These singularities arise because |m| = 1 implies d = 0, leaving
the denominator in equation (88) undetermined. For the unconstrained model as well
as the even and odd models with even N , the proportionality constants in front of the
delta functions can be computed based on the observation that P (m) must be normalized
and symmetric about m = 0. For the even model with odd N , a discrete magnetization
M = −N is permitted, but M = N is not, so that a delta function can only appear at
m = −1, but not m = 1. Conversely, the odd model with odd N can only have a singular
contribution at m = 1, but not at m = −1.

The probability contained in the regular part of the distribution given by equation (91)
follows from the integral

1∫
−1

I1
(
t
√

1 − m2
)

√
1 − m2

dm =
4 sinh2(t/2)

t
(92)

and, upon inserting the partition functions of equations (81) and (82) with h = 0, we
obtain

Pu(m) =
tI1

(
t
√

1 − m2
)

2
√

1 − m2 cosh t
+

δ(m − 1) + δ(m + 1)
cosh t

, (93)

Pe(m) =




tI1(t
√

1−m2)
4
√

1−m2 cosh2(t/2)
+ δ(m−1)+δ(m+1)

cosh2(t/2) if N is even,
tI1(t

√
1−m2)

2
√

1−m2 cosh t
+ 2δ(m+1)

cosh t
if N is odd,

(94)

Po(m) =




tI1(t
√

1−m2)
4
√

1−m2 sinh2(t/2)
if N is even,

tI1(t
√

1−m2)
2
√

1−m2 cosh t
+ 2δ(m−1)

cosh t
if N is odd.

(95)

One noteworthy detail is that the delta functions peak exactly at the boundaries of the
interval [−1, 1]. So long as the integral of the delta function over the entire real line equals
1, it is a matter of definition how much weight is assigned to the left and right of the
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Figure 7. (a) Mean nearest-neighbour correlation 〈m〉 and second-nearest
neighbour correlation 〈g1〉 in the stochastic voter model. Black curves and
symbols are for synchronous, red for asynchronous updates. Analytic predictions
(equations (101), (103), (105), (107)) are shown as solid and dashed curves. The
results of Monte Carlo simulations for a chain of length N = 100 are shown as
circles and squares. (b) The same for the variances of m and g1 (equations (102),
(104), (106), (108)).

interval boundaries. We have adopted here the symmetric convention
∫ ∞

0 δ(x)dx = 1/2
which applies, for instance, if the delta function is the limit of narrowing zero-centred
Gaussians. Other conventions are possible; for example [25] implicitly uses

∫ ∞
0 δ(x)dx = 1

which changes the prefactors in front of the delta functions in equations (93)–(95). With
our definition of the delta function and the integral

1∫
−1

m2I1
(
t
√

1 − m2
)

√
1 − m2

dm =
2
t

(
sinh t

t
− 1

)
, (96)

we can indeed retrieve the susceptibility χ in table 1.

11. Discussion

Combining the results above, we can now analytically solve the stochastic synchronous
and asynchronous voter models introduced in sections 2 and 4. With equation (5) we can
translate m and g1 of the Ising model into correlations between the opinions of nearest
and next-nearest neighbours,

〈m〉 =
1
N

〈∑
i

ωiωi+1

〉
, (97)

〈g1〉 =
1
N

〈∑
i

ωiωi+2

〉
, (98)

where the second equation follows from equation (50) and ω2
i+1 = 1. The variances of m

and g1 are proportional to the second partial derivatives of lnZ with respect to either x
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or y, thus

N var(m) =
χ

β
, (99)

N var(g1) =
1
N

∂2

∂y2 ln Z, (100)

where the derivative in the last equation has to be evaluated at x = 0 for synchronous
and y = 0 for asynchronous updates. For synchronous updates, we have in fact evaluated
this derivative already in equation (60) because in this case Nvar(g1) = C/(kBβ2J2). The
corresponding calculation for asynchronous updates can be performed by differentiating
the partition functions in equations (39) and (40).

Inserting equation (9) into equations (45), (48), (54) and (60), we obtain for the
synchronous voter model in the thermodynamic limit

lim
N→∞

〈m〉 =
{

1 if N is odd and either p+ = 0 or p+ = 1,
0 otherwise, (101)

lim
N→∞

[Nvar(m)] =
1

2
√

p+p−
, (102)

lim
N→∞

〈g1〉 =
1 − 2

√
p+p−

1 + 2
√

p+p−
, (103)

lim
N→∞

[Nvar(g1)] =
8
√

p+p−

(1 + 2
√

p+p−)2 , (104)

where, as before, p− = 1 − p+. For asynchronous updates the corresponding results are

lim
N→∞

〈m〉 =
√

p+ − √
p−√

p+ +
√

p−
, (105)

lim
N→∞

[Nvar(m)] =
4
√

p+p−

1 + 2
√

p+p−
, (106)

lim
N→∞

〈g1〉 =
1 − 2

√
p+p−

1 + 2
√

p+p−
, (107)

lim
N→∞

[Nvar(g1)] =
16

√
p+p−(1 − √

p+p−)
1 + 4

√
p+p−(1 +

√
p+p−)

. (108)

We plot equations (101)–(108) in figure 7. As a numerical confirmation we include the
results of Monte Carlo simulations in the same graphs. The numerical and analytic results
are in excellent agreement.

Comparing the synchronous with the asynchronous case, we notice that the
thermodynamic limits of the nearest-neighbour correlations 〈m〉 differ significantly. While
for synchronous updates nearest neighbours are typically uncorrelated, asynchronous
updates build up non-zero correlations. Interestingly, the mean second-nearest neighbour
correlations 〈g1〉 are identical for both update rules. However, the variances differ
between the rules: var(m) is larger for synchronous updates, whereas var(g1) is larger
for asynchronous updates.
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It is in principle possible to extend the calculations to correlations between more
distant neighbours too. For example, 〈

∑
ωiωi+3〉 can be obtained by formally introducing a

three-spin interaction strength K in the Hamiltonian so that E(σ) = −K
∑

i σiσi+1σi+2−
J
∑

i σiσi+1 − H
∑

σi. The mean third-nearest neighbour correlation follows from
differentiating the partition function Z with respect to K and subsequently setting K = 0
as well as H = 0 for synchronous, J = 0 for asynchronous updates. Unfortunately, the
transfer matrix method developed in section 5 does not easily generalize to arbitrary
k-spin interactions [28], but calculating correlations in the voter model from Ising-like
Hamiltonians is an intriguing possibility for future research.

12. Conclusion

We have studied two variants of the one-dimensional Ising model: in the first variant
the number of positive spins is constrained to an even number; in the second model this
number must be odd. We have motivated both models by mapping them to a model of
opinion dynamics with either synchronous or asynchronous updates. If the temperature
and magnetic field are held constant, the thermodynamic limits of the even and odd Ising
models are the same as the limit of the unconstrained model. However, by simultaneously
increasing the chain length and lowering the temperature and magnetic field, we have
shown that the scaling functions for the even, odd and unconstrained models differ. The
mapping from the Ising model has allowed us to obtain explicit formulae for correlations
between nearest and next-nearest neighbours in the voter model.

We can generalize the problem posed in this paper to higher dimensions or complex
networks by associating spins with the links and enforce an even number of positive spins
on every cycle in the graph. In other words, only balanced signed graphs [29] are permitted.
Assigning opinions to the nodes and mapping them to spins on the links as in equation (5)
will naturally generate such graphs from the voter model. It is a fascinating question how
this changes the thermodynamic limits compared to the unconstrained model.
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