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Synonyms

Anamorphic maps

Definition

Cartograms are thematic maps in which the sizes of geo-
graphic objects appear in proportion to a quantitative map-
ping variable. There are two types of cartograms. If the
mapping variable is represented by the areas of the depicted
regions, the map is called an area cartogram. If distances
between points are a substitute for the mapping variable, the
map is called a distance cartogram. Both cartogram types
visualize quantitative data by distorting familiar geographic
features. However, area cartograms and distance cartograms
have distinct applications, and their construction requires
different mathematical and algorithmic techniques. Suitable
mapping variables for area cartograms are quantities that can
be associated with nonoverlapping regions on a map (e.g.,
countries or provinces). Area cartograms are frequently used
in human geography to visualize population distributions
(“isodemographic maps”) or economic indicators (e.g.,
gross domestic product). Distance cartograms usually repre-
sent travel times (“time-space maps”), but other measures of
separation (e.g., travel costs or fuel consumption) can also
be used.

Area Cartogram

The mathematical objective of an area cartogram (also known
as “value-by-area map”) is to transform geographic regions,
given in the form of multipolygons, into new multipolygons
with areas that match quantitative data associated with each
region. The output should maintain certain properties of con-
ventional geographic maps (e.g., the locations and shapes of
regions) and maintain the regions’ topology (i.e., regions
should share a common border on the cartogram if and only
if they share a common border in geographic space). It is
generally impossible to achieve all these objectives simulta-
neously. A variety of area cartogram types have been devel-
oped that relax different constraints. The main categories of
area cartograms are rectangular cartograms, mosaic
cartograms, circular cartograms, noncontiguous cartograms,
and contiguous cartograms (Fig. 1). For a review of area
cartograms, including further cartogram types, see Tobler
(2004), and Nusrat and Kobourov (2016).

Rectangular Cartograms
In a rectangular cartogram, each region is represented by a
rectangle with an area equal to a numeric input (Fig. 1a).
Rectangular cartograms are the oldest cartogram type with
hand-drawn examples dating back to the late nineteenth cen-
tury (see Tobler 2004 for a historical account). Maintaining
the correct adjacency of regions is generally impossible in
rectangular cartograms. Algorithms have been created to
automate the construction of rectangular cartograms with
correct topology, but only after landlocked regions with
fewer than four neighbors are manually merged with one of
the surrounding regions (Buchin et al. 2012). A variation of
the rectangular cartogram with fewer topological constraints
is the rectilinear cartogram, in which each region can be
composed of multiple rectangles.
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Mosaic Cartograms
Mosaic cartograms divide the map into a set of small square-
shaped or hexagonal tiles, each of equal size and orientation
(Fig. 1b). The most suitable thematic mapping variables for
mosaic cartograms are those that take small integer values so
that one tile corresponds to one discrete unit (e.g., a seat in
parliament). Tiles are assigned to regions such that contiguous
geographic regions are represented by contiguous sets of tiles.
For some data, topological errors are inevitable because the
details of real geographic boundaries cannot be represented
by the discrete shapes of the tiles. To minimize the topological
errors, Dorling (1996) developed a cellular automaton algo-
rithm for the construction of mosaic cartograms. A recently
proposed algorithm aims to improve the preservation of the
regions’ shapes (Cano et al. 2015).

Circular Cartograms
Circular cartograms represent each region by a circle with an
area that is proportional to the thematic mapping variable
(Fig. 1c). Circles are placed such that they may touch, but
do not overlap. Dorling’s (1996) circular cartogram algorithm
and a recent refinement by Inoue (2011) aim to place the
centers of the circles approximately at the same position
where the region centroids would be on a conventional map.
Unlike rectilinear and mosaic cartograms, circular cartograms
always leave unfilled space in the interior of the map. The
restriction to circular shapes may also force neighboring
geographic regions to appear separated on the cartogram.

Noncontiguous Cartograms
Noncontiguous cartograms deliberately introduce empty
space between the depicted regions (Fig. 1d) and, thus,
make no attempt to represent the topological relations
between the regions. The empty space between polygons
allows noncontiguous cartograms to depict the shapes of the
regions accurately. Olson (1976) described a construction
method for noncontiguous cartograms, in which each poly-
gon is shrunk isotropically towards its centroid. The method
tends to create excessive empty space between the polygons.
It can also lead to region overlaps if polygons are concave or
contain holes. A fully automated fail-safe algorithm has yet to
be described in the literature. Hence, the construction of
noncontiguous cartograms currently relies on manual adjust-
ments with image editing software.

Contiguous Cartograms
Contiguous cartograms correctly represent common borders
and tripoints between the depicted regions (Fig. 1e). Con-
struction methods for contiguous cartograms can be divided
into two distinct classes. The first class (“boundaries-only”
methods) restricts itself to moving a finite number of bound-
ary points from their geographic position (e.g., given as
latitude and longitude) to their positions on a cartogram.

The second class creates a cartogram by establishing a
“density-equalizing map projection” that shifts every point
in continuous geographic space to a new position, regardless
of whether the point is on a boundary.

Boundaries-only algorithms can influence the polygon
shapes more directly than algorithms that involve continuous
map projections. Consequently, several boundaries-only
algorithms explicitly seek a compromise between
maintaining polygon shapes and achieving correct polygon
areas (House and Kocmoud 1998; Keim et al. 2004).
A disadvantage of the boundaries-only approach is that it
does not attribute any semantics to points that are not on a
boundary. By contrast, a density-equalizing map projection
makes it possible to show additional data that are resolved at a
finer level than the polygons to be displayed (e.g., addresses,
roads, or distributions on a fine-grained grid; see Hennig
2013).

A density-equalizing map projection is a two-dimensional
function T ¼ (Tx; Ty) that satisfies

detJT � @Tx
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@Ty

@y
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¼ r x, yð Þ
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where det JT is the Jacobian determinant of T, (x, y) are
coordinates on an equal-area projection, r(x, y) is the local
density of the mapping variable (e.g., population per square
kilometer), and r is the spatial average. Equation (1) does not
uniquely specify a projection. Various additional constraints
have been proposed to determine a unique solution. Tobler
(1973) suggested selecting the most angle-preserving projec-
tion among all solutions to Eq. (1). In practice, Tobler’s
optimization algorithm failed to converge. However, several
alternatives, based on analogies from physics, have led to
satisfactory results (Gusein-Zade and Tikunov 1993; Sun
2020). The technique by Gastner et al. (2018) treats r(x, y)
as the density of a fluid that equilibrates over time. This
method solves Eq. (1) by calculating a vortex-free and
mass-conserving velocity field. The calculation, performed
with fast Fourier transforms, has been implemented as a web
application (https://go-cart.io/; see Tingsheng et al. 2019).

Distance Cartogram

The objective of a distance cartogram (also called “linear
cartogram”) is to place a set of points in a flat two-
dimensional geometric space such that the distances between
the points are proportional to a quantitative measure of sepa-
ration. Hereinafter, we assume that the measure of separation
is travel time, which is by far the most frequently used
mapping variable for distance cartograms.

There are two broad categories of distance cartograms. In
the first category (“central-point cartogram”), only travel
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Cartogram, Fig. 1 Area cartograms. (a) Rectangular cartogram
depicting the population of Europe (Buchin et al. 2012). (b) Mosaic
cartogram for the same data (Cano et al. 2015). (c) Circular cartogram
illustrating the predicted world population in 2030 (Inoue 2011). (d)
Noncontiguous cartogram representing the 2005 population of African

countries (Jeworutzki 2020). (e) Contiguous cartogram for the 2016 US
presidential election. The area of each state in the cartogram is propor-
tional to the number of electors. Red states were won by Republicans,
blue states by Democrats (Gastner et al. 2018)

Cartogram 3



times from a central location are represented on the cartogram
(Fig. 2a). The second category (“network cartograms”) aims
to represent travel times in a network whose links are not
necessarily connected to a unique central node (Fig. 2b).

The construction of central-point cartograms is straightfor-
ward. Points can be placed at a distance that is strictly pro-
portional to the travel time, and the angle of the connecting
line to the central point can be chosen arbitrarily (e.g., to
match the angle on a conventional map). Network cartograms
pose greater challenges because it is generally impossible to
simultaneously satisfy the distance constraints for all point
pairs. Instead, the aim is to minimize the deviation from
proportionality. A common objective function is

min f x1, . . . , xn, y1, . . . , ynð Þ

¼
X

i, jð Þ� L

tij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x j

� �2 þ yi � y j

� �2
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where xi and yi are the coordinates of point i on the cartogram,
and tij is the travel time from i to j. L is the set of all links
whose travel times are to be visualized. Minimizing f is
equivalent to multidimensional scaling, a commonmathemat-
ical technique for dimension reduction in statistics. The solu-
tion to Eq. (2) is not unique because any rotation and
translation leaves f unchanged. To select a unique solution,
it is sensible to conduct the following post-hoc steps (Ewing
and Wolfe 1977):

• Scale the cartogram coordinates such that the mean of all
distances between pairs of points matches the mean
interpoint distance in physical space.

• Shift the cartogram coordinates such that the centroid of
the points on the cartogram is the same as the centroid of
their physical locations.

• Rotate the cartogram coordinates around the centroid such
that the rotated coordinates minimize the sum of the
squared distances from the physical coordinates.

If L contains all n(n � 1)/2 possible links between
n points, good numerical results were obtained using the
technique described above (Marchand 1973). However, if
some point pairs are missing from L, there can be multiple
solutions to Eq. (2) which differ by more than an overall
rotation and translation. In this case, the algorithm should
aim to minimize angular distortion to produce readable
cartograms (Shimizu and Inoue 2009).

It is often informative to show more than the transformed
network locations (x1, y1), . . ., (xn, yn) on the cartogram. For
example, coastlines and administrative boundaries can add
valuable context. In this case, the transformation from the
physical locations xpi , y

p
i

� �
, i� 1, . . . , nf g to the cartogram

locations (xi, yi) must be spread into a continuous
two-dimensional space. Ideally, this task is achieved by a
continuous map projection T that interpolates smoothly
between the n points in the network such that T xpi , y

p
i

� � ¼
xi, yið Þ. However, standard interpolation methods can result in
graticule cells whose winding orientation is locally inverted.
That is, there can be coordinates (x,y) where the Jacobian
determinant det JT(x,y) is negative, especially where fast
long-distance connections are geographically close to slow
short-distance connections. To alleviate this problem,
Spiekermann and Wegener (1994) proposed a modification

Cartogram, Fig. 2 Distance cartograms. (a) Central-point cartogram showing the travel time from Tokyo by train in 1965. (b) Network cartogram
based on pairwise travel times between 81 Japanese cities. (Figure from Shimizu and Inoue (2009))
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of multidimensional scaling, called “stepwise multi-
dimensional scaling.” However, a rigorous proof that this
method avoids local inversions in T remains an open research
challenge.

Summary

Conventionally, geographic maps are designed to faithfully
represent metric properties such as areas, distances, or angles.
Cartograms offer an alternative map design with the primary
aim of visualizing quantitative statistical data instead of geo-
metric properties. Data associated with nonoverlapping two-
dimensional regions can be shown on area cartograms, for
which many different designs have been developed over the
past decades. Data that quantify the degree of separation
between points (e.g., travel time) can be visualized with
distance cartograms. Although both types of cartograms
appear inevitably distorted, they can be effective alternatives
to traditional thematic maps (e.g., choropleth maps or
proportional-symbol maps).

Cross-References

▶Data Visualization
▶ Fast Fourier Transform
▶Optimization
▶Tobler, Waldo
▶Travel Time Analysis
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