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Abstract—Power laws, once believed to be a universal feature
of degree distributions in complex networks, have come under
attack in recent years. More sophisticated statistical analysis
has often revealed other heavy-tailed distributions as more
adequate descriptions of real-world data. Here we study degree
and strength distributions of the network of worldwide cargo
ship movements – the main transport network for world
trade – from 14 different years between 1890 and 2008. We
compare the Akaike information criterion of various common
probabilistic models. In almost all cases, the Akaike weights
identify a stretched exponential distribution as the most likely
among the investigated models. Simple or truncated power
laws, by contrast, do not capture the observations equally well.
Cargo ship traffic is thus heavy-tailed with some ports being
significantly busier than the average, but the distribution is not
scale-free. The maximum-likelihood estimators indicate that the
normalized distribution became increasingly shorter-tailed for
one century. However, since the start of this millennium this
trend appears to be reversing.

I. INTRODUCTION

A great number of recent papers on complex networks

have investigated the topological properties of technological

networks, many of them falling into the category of so-called

“spatial networks” [1]. In particular, scholars have revealed

features of spatial networks that differ from the more generic

scale-free and small-world network models: a higher cluster-

ing coefficient due to the importance of proximity [2], fewer

global hubs and more numerous regional hubs (e.g. in air

transport [3]), resulting in a lower vulnerability to targeted

attacks (see [4] for a review on the relationship between

spatial science and network science).

In this study, we focus on the degree and strength distri-

bution of a particularly important spatial network that hauls

the majority of world trade [5]: the network of cargo ship

movements [6], [7], [8], [9]. In this network, nodes are ports

and links are nonstop connections. The degree of a node is

defined as the number of ports that the node is connected to

by at least one arriving or departing ship. Strength refers to

the total number of ship arrivals and departures. The degree

and strength distributions are two summary statistics of a

weighted network that do not allow a complete reconstruc-

tion of traffic on the links. However, these distributions are

an important feature of a network’s topology and have often

been used as circumstantial evidence for mechanistic models

of the network’s evolution [10], [11], [12]. The strength

distribution also plays a crucial role for predicting the full

origin-destination matrix (i.e. the traffic between all pairs of

ports) because it is an input in transport forecasting (e.g. in

the gravity model or intervening opportunities model [13]).

In the early phase of complex network science, many

degree distributions of social, technological and biologi-

cal networks were investigated and characterized as power

laws [10]. In this interpretation, the observed distribution

is a realization of a probabilistic model that assigns the

probability Pr(k) to the event that an arbitrary node has

degree or strength k so that

Pr(k; τ) =
1

ζ(τ)
k−τ , k > 0. (1)

Here ζ(τ) is the Riemann zeta function and τ > 1 a

fixed parameter that has to be fitted to the data. Because

Pr(ak; τ) = a−τ Pr(k; τ), the distribution of (1) is also

called scale-free. The interest in power law distributions

stems mainly from the fact that these are particularly heavy-

tailed (i.e. the tail of the distribution decays more slowly than

an exponential function). A heavy-tailed distribution causes

large fluctuations in degrees and strengths, which is at first

glance consistent with many empirical network data.

Most of the time, a power-law degree distribution was

inferred from straight-line fits to the log-log diagram of

the degree frequency, but this is now generally viewed as

an unsatisfactory approach [14]. Identifying a region where

the data appear more or less linear is largely arbitrary

because most distributions are too noisy and substantially

curved on double-logarithmic scales. Straight-line fits based

on standard least-squares algorithms can also lead to a bias

in the estimated exponents. Furthermore, there is no a priori

reason why Pr(k) has to be a power law. Many other

common probability distributions are also heavy-tailed and

may fit the data better. Recent studies in fact doubt that

power laws are as ubiquitous as once believed [15], [16],

[17].

This paper proposes a more deductive perspective to



understand which type of degree distribution best explains

the observed data. We apply information-based model selec-

tion [18], an increasingly popular approach for comparing

power laws to other heavy-tailed distributions [15], [19],

[20], [21]. Another goal of the paper is to test if the best-

fitting function for the cargo ship network has changed over

time. One hypothesis is that the degree distribution may

structurally change alongside major technological transfor-

mations of the shipping industry and their consequences on

port operations and maritime network configurations.

Data were collected from the Lloyd’s Shipping Index, a

weekly publication by Lloyd’s List, over the period 1890-

2008. For 14 selected years, an entire volume of the Index

was extracted manually, thereby providing a snapshot of

global maritime activity based on the last known voyage

of each vessel between two ports, around the months of

April and May. The network for each year is weighted by

the number of vessel calls by node (i.e. port) and by link

(i.e. inter-port movement). A comparison with official data

sources for Shanghai and Rotterdam revealed that the Index

recorded approximately 0.49% and 0.66% of their respective

annual number of total vessel calls. The studied period

goes across different dominant ship technologies, such as

sail, steam, combustion, specialized vessels (e.g. container,

tanker, etc.), and mega-carriers. Such technological evolu-

tions are believed to have been selective, as some ports were

dropped from the network and replaced or superseded by

new ones better adapted to changing standards, sometimes

resulting in an increasing concentration of port activity

favouring fewer and larger ports. Containerization is seen

as a revolution in itself with profound impacts on network

configuration and world trade [22], [23].

II. PROBABILISTIC MODELS

We investigate eight different models that have frequently

been used to fit empirical degree distributions in complex

networks (Table I). We restrict our study to discrete distri-

butions

(a) whose support are all positive integers and

(b) that depend on maximally two parameters.

Restriction (a) reflects that degree or port calls only have

integer values. One might argue that k = 0 should also be

included and that the maximum degree should have an upper

bound because the network is finite. However, from Lloyd’s

Shipping Index we cannot directly infer which ports were in

principle open to traffic, but remained unused. Consequently,

distributions with infinite support, but excluding k = 0 are

more appropriate in the present context. Restriction (b) is

primarily to avoid overfitting of the data.

We include four one-parameter models: the Poisson, ge-

ometric, zeta and Yule-Simon distribution. The Poisson dis-

tribution applies to the node degrees of large sparse Erdős-

Rényi random graphs, a common null model in network

studies. The tail of a Poisson distribution decays faster

Table I
THE INVESTIGATED PROBABILISTIC MODELS.

distribution parameters Pr(k), k > 0

Poisson (POIS) λ > 0 λk

(eλ−1)k!

geometric (GEOM) p ∈ (0, 1) p(1− p)k−1

zeta (ZETA)
τ > 1 [ζ(τ)kτ ]−1

(“power law”)

Yule-Simon (YULE) ρ > 0 ρB(k, ρ+ 1)
negative binomial p ∈ (0, 1), Γ(k+r)pk(1−p)r

k!Γ(r)[1−(1−p)r](NEGB) r > 0
truncated power q ∈ (0, 1), qk

Liτ (q)kτlaw (TPOW) τ > 1

Poisson-lognormal µ ∈ R,
given by (2) and (3)

(PLGN) [32] σ > 0
discrete Weibull (DWEI) [31] q ∈ (0, 1), 1

q

[

q(k
β) − q((k+1)β)

]

(“stretched exponential”) β > 0

than exponentially so that degrees in Erdős-Rényi graphs

are effectively limited to values near the mean degree. The

geometric distribution decays exponentially, whereas the

zeta and Yule-Simon distributions have power law tails. As a

mixed case we introduce the exponentially truncated power

law as one of our two-parameter models in Table I. The

negative binomial is another two-parameter example that

is heavy-tailed if its parameter r exceeds 1, but with less

weight in the tail than a power law.

Among continuous distributions, two further models

whose decay is between an exponential and a power law

are the Weibull (also known as stretched exponential if

β < 1) and the lognormal distribution. Previous studies have

reported Weibull [24], [25], [26], [27] and lognormal degree

distributions [19], [28], [29], [30] in real-world networks, so

that we include them as candidates in our study too, albeit in

discretized form. We discretize the Weibull distribution fol-

lowing Nakagawa & Osaki [31] so that the complementary

cumulative distribution is a discrete stretched exponential.

Discretizing the lognormal distribution is a little trickier.

Here we apply the method of Bulmer [32] who defined

the Poisson-lognormal distribution fµ,σ(k) as the mixing

of Poisson distributions whose mean λ is lognormally dis-

tributed with parameters µ and σ,

fµ,σ(k) =

∫

∞

0
e−λλk−1 exp

(

− (lnλ−µ)2

2σ2

)

dλ

σ
√
2πk!

. (2)

In our calculation we work with the constrained probability

that k > 0,

Pr(k;µ, σ) =
fµ,σ(k)

1− fµ,σ(0)
. (3)

The same constraint is used in all other investigated models,

which explains why the equations in Table I differ from their

textbook form in those cases where k = 0 is conventionally

included in the distribution’s support.



III. MODEL SELECTION

Assuming that all degrees are independent, the likelihood

function for any of the models in Table I has the general

form

L(v) =

n
∏

i=1

Pr(ki;v), (4)

where v is the set of the parameters in the second column

of the table. The degrees may in reality depend on each

other, so that L(v) in (4) is more properly thought of

as a composite likelihood. We can justify the use of a

composite likelihood in our present context because the

degree distribution Pr(k) that we would like to model is

a marginal (rather than the complete joint) distribution of

all degrees. Therefore, the full dependence structure is in

statistical parlance a “nuisance parameter” which neither

matters to us nor is it clear how to specify the full likelihood.

In such cases, composite likelihood methods have proved to

be a well-behaved alternative [33], [34].

For a specified model i, we determine the parameter v̂i

that maximizes L and hence also the log-likelihood ln(L). A

comparison between different models can then be performed

by ranking their Akaike information criterion (AIC) [35],

AICi = −2 ln(L(v̂i)) + 2Ki, (5)

where Ki is the number of parameters in the respective

model. The AIC not only tells us which model is closest to

the data in information content, properly taking into account

that higher Ki generally allows better fits to the data, but

weakens the explanatory power of the model. We can also

make quantitative comparisons between different models

based on the AIC differences. If AICmin is the minimum

AIC over all models, then the differences

∆i = AICi −AICmin (6)

estimate the relative expected information gain between

model i and the estimated best model. Because the likelihood

of model i given the degrees k1, k2, . . . is proportional to

exp(−∆i/2) [18], the relative likelihood is the so-called

Akaike weight

wi =
exp(−∆i/2)

∑

j exp(−∆j/2)
, (7)

where the summation in the denominator is over all models

included in the comparison. The Akaike weights for the

14 data sets are summarized in Table II for the degree

distributions and in Table III for the strength distributions.

IV. DISCUSSION

As a quick glance at Tables II and III reveals, the discrete

Weibull distribution always has the largest Akaike weight

with only one exception, namely the strength distribution

in 1951 when it is a close runner-up behind the Poisson-

lognormal. All two-parameter models always perform better
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Figure 1. The complementary cumulative strength distribution function in
the year 1995 together with the maximum-likelihood Yule-Simon, truncated
power law, Poisson-lognormal and discrete Weibull distributions. The one-
parameter Yule-Simon distribution fits the data far worse than any of the
two-parameter alternatives. Among these the discrete Weibull approximates
most data points best.

than even the best one-parameter model, which is in all cases

the Yule-Simon distribution. The added term 2Ki in (5) for

introducing a second parameter is therefore always more

than compensated by an increased likelihood.

The effect of including a second parameter can be seen in

Fig. 1 where we compare the observed strength distribution

in 1995 with the maximum-likelihood estimates for the Yule-

Simon, truncated power law, Poisson-lognormal and discrete

Weibull distribution. (There is nothing peculiar about the

year 1995; we have chosen it as a representative example to

demonstrate general features that repeat in most other years

too.) The cumulative distribution of the data is substantially

curved on a log-log scale and thus difficult to fit by an

asymptotic power law such as the Yule-Simon distribution.

All other plotted distributions have the flexibility to follow

the curvature more accurately. Still, the truncated power

law decays too rapidly on the right, whereas the Poisson-

lognormal does not decay quickly enough. The discrete

Weibull distribution with its intermediate asymptotic decay

is a better compromise.

It is striking that this stretched exponential has remained

the best fit for almost all data sets between 1890 and 2008

despite the technological transformations and regional shifts

that took place during this period. For instance, Asia as a

whole concentrated 6% and 38% of world port traffic in

1890 and 2008 respectively, while North America dropped

from 17% to 6%. This observation points towards resilience

in the overall distribution of ship traffic: ports that declined

in importance or completely disappeared from the network

were replaced by others so that the shape of the distribu-

tion remained approximately a stretched exponential. Such

results tend to question the commonly believed impacts



Table II
AKAIKE WEIGHTS FOR THE DEGREE DISTRIBUTION. VALUES BELOW 10−200 ARE ROUNDED TO ZERO. THE SMALLEST AKAIKE WEIGHT IN EACH

YEAR IS HIGHLIGHTED IN BOLD FONT.

Year
number

POIS GEOM ZETA YULE NEGB TPOW PLGN DWEI
of ports

1890 872 0 3.67× 10−120 2.64× 10−32 1.22× 10−21 5.65× 10−7 6.86× 10−3 2.12× 10−1
7.81× 10

−1

1925 1140 0 1.17× 10−166 6.62× 10−70 5.01× 10−55 1.04× 10−3 1.73× 10−3 7.47× 10−3
9.90× 10

−1

1946 1184 0 5.29× 10−175 9.04× 10−57 7.18× 10−42 3.35× 10−4 3.62× 10−2 3.56× 10−2
9.28× 10

−1

1951 1280 0 1.19× 10−184 1.49× 10−69 1.25× 10−52 4.11× 10−5 4.88× 10−4 4.75× 10−2
9.52× 10

−1

1960 1463 0 0 1.73× 10−88 2.90× 10−69 4.21× 10−5 1.01× 10−4 3.35× 10−3
9.97× 10

−1

1965 1506 0 0 2.66× 10−105 7.41× 10−85 2.95× 10−5 2.29× 10−5 1.20× 10−3
9.99× 10

−1

1970 1467 0 0 4.02× 10−97 2.82× 10−78 1.58× 10−2 1.53× 10−2 5.85× 10−5
9.69× 10

−1

1975 1565 0 0 7.00× 10−91 6.35× 10−71 6.27× 10−4 2.71× 10−3 7.40× 10−4
9.96× 10

−1

1980 1581 0 7.85× 10−190 5.61× 10−115 3.08× 10−93 1.42× 10−4 8.92× 10−5 5.26× 10−5 > 9.99× 10
−1

1985 1844 0 0 5.14× 10−136 3.25 × 10−110 2.50× 10−6 1.33× 10−6 2.27× 10−5 > 9.99× 10
−1

1990 1849 0 0 6.49× 10−158 2.03 × 10−132 1.07× 10−4 4.13× 10−5 3.34× 10−8 > 9.99× 10
−1

1995 1880 0 2.37× 10−190 1.03× 10−158 2.28 × 10−132 1.07× 10−3 4.53× 10−4 7.91× 10−9
9.98× 10

−1

2000 1916 0 0 4.81× 10−126 5.17 × 10−100 9.65× 10−3 7.72× 10−3 3.08× 10−7
9.83× 10

−1

2008 1963 0 7.70× 10−191 4.34× 10−102 2.72× 10−76 1.46× 10−1 3.37× 10−1 1.81× 10−7
5.16× 10

−1

Table III
AKAIKE WEIGHTS FOR THE STRENGTH DISTRIBUTION. VALUES BELOW 10−200 ARE ROUNDED TO ZERO. THE SMALLEST AKAIKE WEIGHT IN EACH

YEAR IS HIGHLIGHTED IN BOLD FONT.

Year POIS GEOM ZETA YULE NEGB TPOW PLGN DWEI

1890 0 0 1.78× 10−25 3.69 × 10−17 9.43 × 10−23 6.52× 10−5 4.20× 10−1
5.80× 10

−1

1925 0 0 8.17× 10−51 4.64 × 10−39 5.14 × 10−23 1.53× 10−9 4.20× 10−1
5.80× 10

−1

1946 0 0 1.78× 10−46 1.91 × 10−34 9.66 × 10−20 9.85× 10−6 2.94× 10−1
7.06× 10

−1

1951 0 0 1.51× 10−56 2.40 × 10−42 3.64 × 10−20 8.84× 10−9
5.04× 10

−1 4.96× 10−1

1960 0 0 1.87× 10−73 3.62 × 10−57 3.39 × 10−21 1.69 × 10−11 2.93× 10−1
7.07× 10

−1

1965 0 0 1.29× 10−78 2.12 × 10−62 2.93 × 10−28 8.59 × 10−16 3.89× 10−1
6.11× 10

−1

1970 0 0 7.00× 10−79 4.45 × 10−63 2.46 × 10−14 3.40× 10−8 1.95× 10−2
9.80× 10

−1

1975 0 0 2.23× 10−77 3.35 × 10−60 3.00 × 10−20 2.22 × 10−10 1.25× 10−1
8.75× 10

−1

1980 0 0 3.41× 10−95 1.86 × 10−76 6.12 × 10−16 1.80 × 10−12 4.71× 10−2
9.53× 10

−1

1985 0 0 3.90× 10−119 3.95 × 10−96 1.52 × 10−20 6.42 × 10−18 1.82× 10−1
8.18× 10

−1

1990 0 0 1.34× 10−146 8.66× 10−124 2.58 × 10−20 3.37 × 10−20 4.77× 10−3
9.95× 10

−1

1995 0 0 7.04× 10−143 4.46× 10−119 1.34 × 10−17 1.61 × 10−17 7.76× 10−4
9.99× 10

−1

2000 0 0 4.26× 10−119 3.29 × 10−95 3.06 × 10−18 8.34 × 10−16 4.47× 10−3
9.96× 10

−1

2008 0 0 7.67× 10−94 3.11 × 10−71 1.21 × 10−15 5.94× 10−9 4.37× 10−5 > 9.99× 10
−1

of technological changes on shipping networks, such as

increasing hierarchical linkages favoured by containeriza-

tion and related hub-and-spoke systems. Modern shipping

operations are path-dependent as they rely upon port areas

and functions that were already in place [36], and so the

port hierarchies of the late nineteenth and early twenty-first

centuries differ more in scale than in nature [37]. Another

possible explanation is the growing trade and economic

integration within regions that favoured more transversal,

short-sea and coastal shipping linkages that are not always

routed through large hubs. Hierarchical and nonhierarchical

tendencies thus overlap and mitigate one another at the

global level.

A closer look at the maximum-likelihood estimators for

the Weibull parameters, however, reveals that the distribution

has not remained static. In Fig. 2 we plot the tail exponent

β for all years included in this study. For the degree

distribution, β increased from 0.304±0.010 to 0.453±0.008
between 1890 and 1995. The strength distribution shows

a similar behaviour with β increasing from 0.200 ± 0.008
to 0.369 ± 0.007 during the same period. In other words,

the distributions became less heavy-tailed for more than one

century, suggesting a flattening hierarchy among the world’s

ports. Generally, β is smaller for the strength distribution

indicating that its tail is more stretched than for the degree.

This result is consistent with a previous observation in [8]
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Figure 2. The maximum-likelihood estimate for the tail exponent β in the
discrete Weibull distribution defined in Table I. Circles refer to the degree,
squares to the strength distributions. The data show an overall increase in β
between 1890 and 1995 (i.e. the distributions became shorter-tailed). Since
then, β has decreased again.

that the strength of a port scales on average superlinearly

with its degree.

After the peak in 1995, β has begun to decline again. As

possible reasons, China’s economic rise or the increasing

size of container ships come to mind. We are planning to

carry out further analysis to determine if the changing tails

are indeed caused by regional shifts affecting the distribu-

tion globally. We will also search for possible impacts of

technological changes and enhance the data base with more

regular snapshots in the period between 1890 and 1946. In

each selected year, more movements will be included as data

extraction from Lloyd’s Shipping Index proceeds.

V. CONCLUSION

As in all model selection problems, one should bear in

mind that reality is almost certainly more complex than any

of the candidate models. In our case, it might be possible to

reduce the AIC further by allowing more than two parame-

ters. With additional data, it might also become possible to

statistically analyze the dynamics of the network with full

likelihood methods [38] rather than resorting to summary

statistics such as degree and strength distributions. Despite

these caveats, model selection based on Akaike weights

is a statistically rigorous approach based on information

theory [18]. Therefore, we can firmly conclude that – among

all investigated models – the Weibull distribution is clearly

the overall most likely candidate to explain the degree and

strength distributions in the global network of cargo shipping

during the past 125 years.
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[1] M. Barthélemy, “Spatial networks,” Physics Reports, vol. 499,
pp. 1–101, 2010.
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