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Abstract—Characterizing the connectivity of nodes in economic
and technological networks is of key interest to assess their role
and function. Here we study the distributions of vessel calls
and the ports’ degrees (i.e. the number of other ports that
a port is directly linked with) in the network of worldwide
cargo ship movements — the main transport network for world
trade — for twenty different years between 1890 and 2008.
We compare the Akaike information criterion and goodness-
of-fit statistics of various common probabilistic models. Simple
power laws, once believed to be a universal feature of degree
distributions in complex networks, are inadequate to fit the data.
Other subexponential distributions, such as lognormal or Weibull
distributions, perform consistently better. Cargo ship traffic has
thus for the entire study period been heavy-tailed with some ports
being significantly busier than the average, but the distribution
is not scale-free. Vuong’s likelihood ratio test confirms that since
1975 a Weibull distribution can be regarded as a plausible null
hypothesis. Lognormal distributions perform well for most years
in Kolmogorov-Smirnov and Anderson-Darling tests for the call
distribution. The Gini coefficient of the distribution has slightly,
but statistically significantly, decreased over the study period,
highlighting a tendency towards a more polycentric distribution
in port traffic.

I. INTRODUCTION

Recent years have seen intense research activity in the
modelling and analysis of complex networks, mainly driven
by the availability of new large-scale data bases for social,
biological and technological networks (see for example [1]]
for a review). Maritime transport networks are one area where
these new ideas and techniques have found fertile ground [2],
[3]], [4], [S]. In this study, we analyze a data base generated
from Lloyd’s Shipping Index, a weekly publication of cargo
ship movements by Lloyd’s List, over the period from 1890 to
2008. For twenty selected years, an entire volume of the Index,
each containing data for one entire week, was extracted and
the data transformed into a network where the nodes are ports
and links are nonstop ship voyages. Because cargo shipping
is the dominant transport mode for world trade [6]], it is of
great economic relevance to understand the importance of the
nodes. Here we measure importance in two different ways:

« the number of vessel calls and
o the degree defined as the number of ports that the node
is connected to by at least one arriving or departing ship.

The call and degree distributions are arguably the two
most important summary statistics of the network. They may

not allow a complete reconstruction of traffic on the links.
However, unweighted and weighted degree distributions are an
important feature of a network’s topology and have often been
used as circumstantial evidence for mechanistic models of the
network’s evolution [7], [8], [9]. The call distribution also
plays a crucial role for predicting the full origin-destination
matrix (i.e. the traffic between all pairs of ports) because it is
an input in transport forecasting (e.g. in the gravity model or
the intervening opportunities model [10]).

In the early phase of complex network science, many degree
distributions of real-world networks were characterized as
power laws [7]]. In the parlance of statistics, an integer-valued
power law is a probabilistic model that assigns the probability
Pr(k) to the event that an arbitrary node has degree or weight
k so that

k*‘l’
(r)’

Here ((7) is the Riemann zeta function and 7 > 1 a fixed
parameter that has to be fitted to the data. Because Pr(ak; 1) =
a7 Pr(k; ), the distribution of Eq. |1|is also called scale-free.
The interest in power law distributions stems mainly from the
fact that these are particularly heavy-tailed (i.e. the tail of the
distribution decays more slowly than an exponential function).
As a consequence, a power-law distribution has a large range
in degrees: while most nodes have only a small degree, some
nodes possess a much larger degree than the average. At first
glance, such a heterogeneity in degrees is indeed found in
many empirical networks [11].

Pr(k; ) = k=1,2,3,... (1)
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Most of the time, a power-law degree distribution was
inferred from straight-line fits to the log-log diagram of the
degree frequency, but this is now generally viewed as an
unsatisfactory approach [12]. Identifying a region where the
data appear more or less linear is largely arbitrary because
most distributions are too noisy and substantially curved on
double-logarithmic scales. Straight-line fits based on standard
least-squares algorithms can also lead to a bias in the estimated
exponents. Most importantly, however, there is no a priori
reason why Pr(k) has to be a power law. Many other common
probability distributions are also heavy-tailed and may fit the
data better. Recent studies in fact doubt that power laws are
as ubiquitous as once believed [13], [[14], [15].



This study proposes that statistical methods should be
applied to the maritime network to understand which type of
call or degree distribution best explains the observed data. We
apply information-based model selection [16] and statistical
tests to compare different candidate distributions. Another
goal of the paper is to assess whether the call and degree
distributions of the cargo ship network have significantly
changed over time. One hypothesis from the geographic liter-
ature is that the call and degree distributions may structurally
change alongside major technological transformations of the
shipping industry and their consequences on port operations
and maritime network configurations [17]]. The studied period
goes across different dominant ship technologies, such as
sail, steam, combustion, specialized vessels (e.g. container,
tanker), and mega-carriers. Such technological evolutions are
believed to have been selective, as some ports were dropped
from the network and replaced or superseded by new ones
better adapted to changing standards, sometimes resulting in an
increasing concentration of port activity favouring fewer and
larger ports. Containerization is seen as a revolution in itself
with profound impacts on network configuration and world
trade [[18]], [19]. In this study we find indeed evidence that the
call distributions have evolved so that the fraction of small
ports has decreased. At the same time the Gini coefficient, a
common measure for inequality of a distribution, has slightly
decreased over the study period.

Before proceeding with the statistical analysis, we empha-
size one caveat. The voyages reported by Lloyd’s certainly
form only a subset of the entire global traffic distribution
and may possibly be biased, for example if certain ports,
ships or routes are systematically underreported. The quality of
reporting may also differ between different years. We currently
have no sufficient knowledge whether such biases are present
and thus cannot apply any corrections. Lloyd’s Shipping Index,
however, is the most complete and consistent data source
available to study the development of the cargo ship network
over the investigated time period. Therefore, we are confident
that the trends reported below are genuinely representative of
the network’s evolution.

II. PROBABILISTIC MODELS

We investigate eight different models that have frequently
been used to fit empirical degree distributions in complex net-
works (Table [l). We restrict our study to discrete distributions
(a) whose support are all positive integers and
(b) that depend on maximally two parameters.

Restriction (a) reflects that degree or port calls only have
integer values. One might argue that £k = 0 should also be
included and that the maximum degree should have an upper
bound because the network is finite. However, from Lloyd’s
Shipping Index we cannot directly infer which ports were in
principle open to traffic, but remained unused. Consequently,
distributions with infinite support, but excluding £ = 0 are
more appropriate in the present context. The number of ports
with k& > 0 can differ slightly between the call and degree
distributions: some ports have a positive number of calls but

degree zero because in the raw data some vessels are reported
to call at one, not two ports (namely origin and destination)
in their latest known voyage. For the call distribution we
kept these isolated ports, but removed them from the degree
distribution since zero is unlikely to be their true degree.
Restriction (b) avoids overfitting of the data, but still includes
the “usual suspects” for degree distributions in socio-economic
networks.

We include four one-parameter models: besides the power
law of Eq. [l (also known as zeta distribution), we assess the
likelihood of Poisson, geometric and Yule-Simon distributions.
The Poisson distribution describes the node degrees of large
sparse Erd6s-Rényi random graphs, a common null model
in network studies. The tail of a Poisson distribution decays
faster than exponentially so that degrees in Erd6s-Rényi graphs
are effectively limited to values near the mean degree. The
geometric distribution decays exponentially, whereas the Yule-
Simon distribution has a power law tail and only differs mildly
from a strict power law for small k. Because the Yule-Simon
distribution is the exact solution of popular “preferential at-
tachment” models [20] (i.e. models where nodes are constantly
added to the network and linked preferentially to nodes of high
degree), we have included it in our list.

As a mixed case we introduce the exponentially truncated
power law as one of our two-parameter models in Table
The negative binomial is another two-parameter example that
decays more slowly than an exponential if its parameter r
exceeds 1, but with much less weight in the tail than a power
law. All the distributions mentioned so far are discrete: they
are defined for integer numbers k. In the case of the Poisson
and negative binomial distributions, £ = 0 is conventionally
included in the distributions’ support. In order to restore
restriction (a) from above, we constrain these distributions to
exclude k& = 0, which explains why the equations in Table [
differ from the ordinary textbook form.

Among continuous distributions, there are two further
canonical candidates whose decay is between an exponential
and a power law: the lognormal distribution and the Weibull
distribution (also known as stretched exponential if 5 < 1 in
the formula stated in Table [). We include these models in our
study because previous studies have reported lognormal [21]],
[22], [23]], [24] and Weibull distributions [25], [26], [27], [28]
in real-world networks. To allow a direct comparison with the
other models, we have to discretize the continuous lognormal
and Weibull distribution, which can be accomplished in a vari-
ety of ways. Here we have chosen to integrate the continuous
distributions between subsequent integers k and £+ 1. In terms
of the cumulative distribution F', we can express the integral as
the probability F'(k+1)— F'(k). For the lognormal distribution,
we assign this probability to the integer at the upper boundary
k+1 and call this the “discrete lognormal” distribution. In the
case of the Weibull distribution preliminary tests showed that
the likelihoods are in general slightly larger if F'(k+1)—F (k)
is assigned to k instead of k£ + 1. Imposing the constraint (a),
yields the expression for the “discrete Weibull” distribution in
Table I



TABLE I
THE INVESTIGATED PROBABILISTIC MODELS.

distribution parameters Pr(k), k=1,2,3,...
. G
Poisson (POIS) A>0 e
geometric (GEOM) p e (0,1) p(1 — p)k—1
power law (ZETA) T>1 [¢(r)kT] !
Yule-Simon (YULE) p>0 pB(k,p+1)

negative binomial (NEGB) pe (0,1),r>0

T (k+r)p*(1—p)"

KID(r)[1—(1—p)"]
%

truncated power law (TPOW) | ¢ € (0,1), 7> 1 Li,%W
1 1 N . _
=+ s erf ——) ifk=1
discrete lognormal (DLGN) LER, >0 202 Ik V2o In(k—1)—
%[erf n *“)—erf(i“)} if k=23 ...
20 \/50'
discrete Weibull (DWEI) €(0,1),8>0 1 [q(kﬂ) _ q<<k+1>ﬁ)]

One subtlety to note is that in this study we do not judge
the fit of the distributions by the tails alone as it is often done
elsewhere (e.g. [7], [12]). In the study of continuous phase
transitions in physics it is justified to restrict attention to the
tails because only these are important for determining “uni-
versal” power-law features. However, in the present context
it is far-fetched to assume that the cargo ship network has
anything to do with a physical phase transition. Instead we
will assess the match of the distribution over the full set of
positive integers k = 1,2,3,... with the same motivation as
in the study of city size distributions in Ref. [29]]. Although
it is in principle possible to restrict the analysis to the tails
by introducing a lower cutoff £ > 1, this would introduce an
additional parameter and ignore the bulk of the data which
consists of ports with only few calls and low degree. On the
contrary, we regard it as valuable information for practitioners
to model low-traffic ports too, not only the small fraction of
busy hubs that make up the distribution’s tail.

III. AKAIKE INFORMATION CRITERION

Assuming that all calls and degrees are independent, the
likelihood function for any of the models in Table |I] has the
general form

L(v) = [[ Pr(ks;v), )
i=1
where k; is the number of calls (or the degree) at port ¢,
n is the number of ports in the sample, and v is the set
of the parameters in the second column of the table. The
calls (or degrees) may in reality depend on each other so that
L(v) in Eq. [2| is more properly thought of as a composite
likelihood. We can justify the use of a composite likelihood
in our present context because the call (or degree) distribution
Pr(k) that we would like to model is a marginal rather than the
complete joint distribution of all calls (or degrees). Therefore,
the full dependence structure is in statistical terms a “nuisance
parameter” which neither matters to us nor is it clear how to
specify the full likelihood. In such cases, composite likelihood
methods have proved to be a well-behaved alternative [30],

[31]. Another, more pragmatic, point of view is that there is
no straightforward method to establish from our data how the
k; may depend on each other so that assuming independence
is the most parsimonious choice.

For a specified model j, we determine the parameter Vv
that maximizes L and hence also the log-likelihood In(L). A
comparison between different models can then be performed
by ranking their Akaike information criterion (AIC) [32],

where K; is the number of parameters in the respective
model. The AIC not only tells us which model is closest to
the data in information content, properly taking into account
that higher K; generally allows better fits to the data, but
weakens the explanatory power of the model. We can also
make quantitative comparisons between different models based
on the AIC differences. If AIC,,;, is the minimum AIC over
all models, then the difference

estimates the relative expected information gain between
model j and the estimated best model. Because the likelihood
of model j given the number of calls (or degrees) ki, ks, . ..
is proportional to exp(—A;/2) [16], the relative likelihood is
the so-called Akaike weight

L _en(-4y/2)
T exp(—A/2)
where the summation in the denominator is over all mod-
els included in the comparison. Model selection by Akaike
weights has become an increasingly popular tool to compare
different hypothesized probability distributions [13]], [21], [33],
[34]]. The Akaike weights for our data sets are summarized in
Table [ for the call distributions and in Table [[II|for the degree
distributions.
As a quick glance at the tables reveals, the maximum Akaike
weights are achieved by the discrete lognormal and Weibull
distributions and, in the case of the calls, in some years

&)



TABLE I
AKAIKE WEIGHTS FOR THE DISTRIBUTION OF VESSEL CALLS. VALUES BELOW 10~200 ARE ROUNDED TO ZERO. THE LARGEST AKAIKE WEIGHT IN
EACH YEAR IS HIGHLIGHTED IN BOLD TYPE.

| Year [ ports [[ POIS [ GEOM | ZETA YULE NEGB TPOW DLGN DWEI
1890 | 904 0 0 2.61x 10716 | 1.60 x 10710 | 461 x 10739 | 3.64x 10~ | 6.10x 101 | 2.58 x 10~2
1910 | 1200 0 0 2.90 x 1072% | 4.56 x 10717 | 4.76 x 10731 | 9.37 x 10~1 | 6.13 x 102 2.12 x 1073
1915 | 992 0 0 1.51 x 10723 | 1.23x 10716 | 3,55 x 1023 | 7.70 x 10~1 | 2.26 x 10~! 3.94 x 1073
1920 | 994 0 0 9.36 x 10720 | 2.07 x 10713 | 242 x 10730 | 8.83 x 10! | 1.10 x 107! 6.22 x 10~3
1925 | 1205 0 0 2.51x 10729 | 417x10720 | 6.09x 10730 | 6.97x 1072 | 827 x10"1 | 1.03x 10!
1930 | 1254 0 0 478 x 10733 | 3.16 x 10723 | 561 x 10722 | 9.64 x 1073 | 9.64 x 101 | 2.66 x 10~2
1935 | 1282 0 0 429 x 10733 | 3.15x 10722 | 5.01 x 10729 | 1.03x 1072 | 5.24x 101 | 4.66 x 10~!
1940 | 1309 0 0 1.42x 10723 | 2.62x 10715 | 1.50 x 10~ | 9.79 x 10~1 | 1.96 x 10~2 1.20 x 103
1946 | 1281 0 0 6.05 x 10726 | 7.30 x 10717 | 9.37 x 10737 | 847 x 10~1 | 847 x 10~2 6.80 x 1072
1951 | 1321 0 0 1.91 x 10734 | 1.06 x 10723 | 1.42x1072% | 321 x 10! | 567 x10"1 | 1.13x 10~!
1960 | 1541 0 0 1.49 x 10747 | 1.51 x 10734 | 2.66 x 10723 | 899 x 1072 | 878 x 10~1 | 3.22 x 102
1965 | 1554 0 0 2.58 x 10759 | 1.07 x107%** | 1.42x 10717 | 352x 1073 | 6.40 x 10~' | 3.56 x 10~1
1970 | 1512 0 0 5.70 x 10757 | 229 x 1043 | 473 x1071* | 583 x 10~1 | 3.44 x 107! 7.25 x 10~2
1975 | 1610 0 0 6.08 x 10760 | 1.08 x 10=%4 | 298 x 10722 | 1.15x10~* | 491 x10~! | 5.09x 101
1980 | 1637 0 0 1.40 x 10776 | 1.40 x 10759 | 3.60 x 10~1® | 2.23 x 10~ 2.17x 101 | 7.83 x 101
1985 | 1925 0 0 3.21 x 107107 | 1.22x 1078% | 2.54 x 10719 | 8.01 x 10~'* | 9.46 x 10~2 | 9.05 x 10~
1990 | 1903 0 0 1.14 x 107197 | 2.37 x 10735 | 1.12x 10718 | 6.86 x 10~ 1% | 4.20 x 102 | 9.57 x 101
1995 | 1953 0 0 2.93 x 107107 | 6.45 x 10785 | 1.71 x 1071® | 834 x 1011 | 2.09x 1072 | 9.79 x 101
2000 | 2050 0 0 1.41 x 10713 | 1.36 x 10789 | 2,15 x 10715 | 4.87 x 10711 | 1.13x 1072 | 9.89 x 101
2008 | 2157 0 0 1.82x 1079 | 3.97x 1077 | 8.03x 10715 | 593 x107° | 4.31x1072 | 9.57 x 10~
TABLE III

AKAIKE WEIGHTS FOR THE DEGREE DISTRIBUTION. VALUES BELOW 10200 ARE ROUNDED TO ZERO. THE LARGEST AKAIKE WEIGHT IN EACH YEAR IS
HIGHLIGHTED IN BOLD TYPE.

| Year | ports [POIS|  GEOM ZETA YULE NEGB TPOW DLGN DWEI
1890 | 895 0 | 3.05x107182 | 496 x 10~37 1.22 x 10728 8.99 x 1078 | 3.62x 104 | 6.21 x 101 3.79 x 10~1
1910 | 1186 || 0 | 3.66 x 107186 | 1.97 x 10769 | 5.02 x 10~53 1.20 x 109 1.54x 1078 | 9.82x 101 1.80 x 102
1915 | 970 0 | 977 x 107140 | 4,07 x 10762 | 8.23 x 10~% 1.48 x 1074 1.87x107* | 6.04 x 101 3.96 x 10~1
1920 | 955 0 | 866 x 107147 | 4.53 x 10-60 1.01 x 10746 | 513 x 1077 1.18 x 1076 | 9.65 x 10~ 3.49 x 10~2
1925 | 1170 || 0 | 1.79 x 10188 | 3.85 x 1067 | 3.23 x 1052 5.22 x 1075 | 3.74x 10~* 1.05 x 10~ 1 8.94 x 101
1930 | 1231 0 | 1.65x 107170 | 6.11 x 10~89 1.59 x 10~ 71 9.58 x 10~? 8.04x 1079 | 7.94x 101 2.06 x 10~1
1935 | 1259 || 0 | 3.08 x 10=181 | 1.07x 10790 | 222 x 10772 | 5.79 x 10~11 | 518 x 10~ 1! | 9.92 x 101 8.34 x 10~3
1940 | 1273 || 0 | 3.41x 107196 | 1.25 x 10785 | 6.69 x 10767 | 2.44 x 10713 | 543 x 10~13 |>9.99 x 10~1| 4.92 x 10~*
1946 | 1220 || 0 | 3.38 x 10197 | 5.90 x 10~57 1.13 x 104! 1.13 x 1076 1.51 x 1073 | 511 x10°1 4.87 x 1071
1951 | 1294 0 | 3.85x107180 | 3.94 x 10—88 2.04 x 10799 1.19 x 10—9 1.29 x 1079 | 9.94 x 101 6.48 x 103
1960 | 1506 || O 0 8.78 x 107105 | 1.09x 10783 | 347 x 1072 | 3.26 x 1079 | 9.57 x 101 4.29 x 10~2
1965 | 1534 || O 0 6.26 x 10~119 | 3.03x 10797 | 2.53 x 107 1.12 x 1077 1.18 x 1071 8.82 x 101
1970 | 1487 || © 0 2.72 x 107109 | 220 x 10789 | 2.71 x 10~ 1.74 x 10~* | 6.07 x 1073 9.93 x 101
1975 | 1579 || © 0 1.92 x 107193 | 3.00 x 10782 1.57 x 106 | 2.00 x 10~6 2.75 x 10~1 7.25 x 101
1980 | 1591 0 | 920 x 107198 | 3.34 x 107124 | 244 x 107102 | 4,49 x 105 2.19 x 10~° 1.25 x 107% [>9.99 x 10~
1985 | 1872 0 0 2.18 x 107150 | 1,57 x 107123 | 1.64x10~8 | 5.10 x 1077 6.41 x 10~ 9.99 x 101
1990 | 1875 0 0 4.46 x 107162 | 1.44 x 10~136 | 1,96 x 10~° 7.40 x 10~6 1.15x 1078 |[>9.99 x 101
1995 | 1897 || 0 | 4.51 x 10~191 | 531 x 107176 | 3.15 x 10~14° | 3.07 x 10=* | 899 x 107° | 6.78 x 1071° |>9.99 x 10~
2000 | 1969 || 0 0 2.60 x 107148 | 6,90 x 10~ 121 | 1.84x 1073 | 9.28 x 10~% 1.17 x 107 9.97 x 101
2008 | 2007 || O | 885 x 107183 | 2,55 x 107127 | 1.78 x 10799 | 2.01 x 10~} 1.61 x 1071 9.33 x 10—8 6.38 x 101

a truncated power law. These two-parameter models always
perform better than even the best one-parameter model, which

is in all cases the Yule-Simon distribution. The added term

2K; in Eq. [3] for introducing a second parameter is therefore

more than compensated by an increased likelihood for the best-
performing models.

The effect of including a second parameter can be seen

in Fig. [T[(a) and (b) where we compare the observed call
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Fig. 1.

Observed complementary cumulative call distribution function in (a) 1910, (b) 2000 together with the maximum-likelihood Yule-Simon, truncated

power law, discrete lognormal and discrete Weibull distributions. The one-parameter Yule-Simon distribution fits the data far worse than any of the two-
parameter alternatives. In 1910 the truncated power law has the highest likelihood among all models. In 2000 the Weibull distribution fits best (Table [I). Inset
in (b): The fraction of ports with no more than ten ports has dropped from around 75% to approximately 68% during the 1960s. This subtle, but statistically
significant decrease is responsible for more curvature in later years on the left-hand side of the observed data. Error bars are jackknife estimates.

distributions in 1910 and 2000 with the maximum-likelihood
estimates for the Yule-Simon, truncated power law, lognormal
and Weibull distributions. Both observed distributions are sub-
stantially curved on a log-log scale and thus difficult to fit by
an asymptotic power law such as the Yule-Simon distribution.
All other plotted candidate distributions have the flexibility
to follow the curvature more accurately. Among these, the
truncated power law decays in the limit £ — oo most rapidly
and the lognormal distribution most slowly in the tailm

Comparing the observed call distributions in 1910 and 2000,
the most obvious difference is that the initial decay on the left-
hand side appears less curved in Fig.[T[a) than in (b). For this
reason, the truncated power law that fits well in 1910 is no
longer a suitable candidate in 2000. In general, we observed
by visual inspection that in the small to medium port range the
complementary cumulative call distribution tends to be more
curved in later years. This trend is detected by the Akaike
weights in Table [II] that have shifted over the years from the
truncated power law to the Weibull distribution. In practice,
this change in the distribution implies that there is now a
smaller fraction of ports listed with maximally ten calls in
one week. The inset in Fig. [[(b) confirms this trend, showing
a statistically significant decrease between the years 1890 and
2008 from 75.4% to 69.0% of ports having no more than ten
calls/l

The interpretation of the degree distribution is a little
trickier. The Akaike weights in Table seem to suggest a
clear distinction: before the mid-1960s the most likely model
is in all but one case a lognormal, afterwards always a Weibull
distribution. However, Figure Eka) shows that in 1910 the

'Depending on the parameters, k may have to be larger than the maximum
port size for the lognormal to exceed the Weibull distribution. For example in
Fig.[Tfa) we are not yet far enough in the asymptotic regime on the right-hand
side for the Weibull distribution to fall below the lognormal.

2Because the number of ports, however, has more than doubled between
1890 and 2008 (see second column of Table @), the absolute number of ports
with less than or equal to ten calls has of course still increased.

lognormal and Weibull distributions are visually more or less
equally good fits. Only in 2000 (Fig. [2b) does the maximum-
likelihood Weibull distribution fit clearly better in the tail than
the lognormal. Unlike for the call distribution, we do not find
a significant trend that the percentage of low-degree ports has
decreased (inset in Fig. 2b). In order to shed light on the
significance of the apparent trend in the Akaike weights for
the degree distribution, we will in the next section compare the
performance of the maximum-likelihood models with another
statistical technique.

IV. VUONG’S LIKELIHOOD RATIO TESTS

For models with an equal number of parameters, Akaike
weights compare the models purely by the differences in their
log-likelihood. Proponents of AIC-based model selection have
argued that the Akaike weights are sufficient to judge the
significance of the best model [[16]. However, others argue that
the log-likelihood alone does not in itself allow an assessment
when we should reject the second-ranked model in favour of
the model with the highest Akaike weight [35]. Likelihood
ratio tests, on the other hand, can inform us how significant
the difference in the log-likelihood is [12].

In this section we investigate the three two-parameter mod-
els that achieved maximal Akaike weight in at least one year
for either the call or degree distribution: truncated power
law, discrete lognormal and Weibull distributions. For these
nonnested models we apply the likelihood ratio test devised
by Vuong [36]. The test statistic for comparing models  and
s is the ratio of their likelihoods from Eq. |2| or equivalently
its logarithm

_ - pr(ki)
f=l 21;[ ps(ki)

= Z (lnpr(ki) - lnps(ki)) ’ (6)
i=1

where p,.(k;) is the probability Pr(k;, v,.) assigned to observ-

ing degree k; in model r with the maximum-likelihood param-

eters v,.. If we assume that all observed k; are independent (as
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Observed complementary cumulative degree distribution function in (a) 1910, (b) 2000 together with the maximum-likelihood Yule-Simon, truncated

power law, discrete lognormal and discrete Weibull distributions. The highest Akaike weight is achieved by the (a) lognormal, (b) Weibull distribution. Inset

in (b): The fraction of ports with degree < 10 does not show a clear trend.

we discussed after Eq. , then all terms In p, (k;) —Inps(k;) in
the sum on the left-hand side of Eq. [6] are also independent.
With the shorthand notation I; = lnp,(k;) — Inps(k;), the
variance of one term in the sum can be estimated as

1 n 1 n 2
0'2 = ZZZZQ — ﬁle .
i=1 i=1

For sufficiently large n, the random variable R thus becomes
normally distributed with an estimated variance no?. We can
then apply a conventional Z-test to determine whether the
observed value R is significantly different from zero given
the observed variance. The p-value can be expressed as

p = erfc (|R|>
V2no?)’
where erfc is the complementary error function.

This handwaving derivation, which follows essentially that
of Ref. [12], is admittedly oversimplified. For both models r
and s in Eq. [6] we have fitted the parameters v, and ¥ to the
same data so that there are nontrivial correlations between R
and 2. However, Ref. [36] proved that Eq. [8]still remains true.
One noteworthy point about this equation is the appearance of
the variance 2. The variance of the data is a crucial piece of
evidence whether one of the two models in question is likely
to be significantly better. The Akaike weights, by contrast, did
not account for the variance.

We list the p-values for all pairwise comparisons between
truncated power laws, lognormal and Weibull distributions in
Table We highlight in bold type all p-values less than
0.1 and, where the likelihood ratio test indicates a deviation
from randomness at this 10% significance level, we list in
parentheses the more likely model. As an overall pattern
for the call distribution (left half of the table), the tests
are for most years indifferent between the three candidate
models. However, for the degrees (right half of the table)
the test strongly rejects for most years the truncated power
law, consistent with its small Akaike weights in Table

(7

®)

Also in agreement with our earlier findings, the tests favour
the Weibull distribution in some of the more recent years for
both calls and degrees. There are examples where the Akaike
weights suggest a high likelihood for one particular model,
yet the likelihood-ratio test does not lend strong support to it.
For example, in 2008 the Weibull distribution has an Akaike
weight 0.957 for the calls, but, after factoring in the variance in
the data, the likelihood ratio test does not reject the possibility
that the data could be from a lognormal distribution (Akaike
weight 0.043) or even a truncated power law despite its much
lower Akaike weight (5.93 x 107°).

There is thus for most years no simple answer if the call
distribution is better described by a Weibull or lognormal
distribution. Over the range of observed calls (i.e. between 1
and approximately 2000 — the precise upper bound of course
depends on the year in question) the maximum-likelihood
distributions from the lognormal and Weibull family do in
fact not differ very much as can be seen for example in
Fig. [I(a). Likewise, for the degree distribution there is no
clear support in favour of the lognormal hypothesis prior to
1960 (except in 1940) despite generally having the highest
Akaike weight. Afterwards, there is increasing evidence in
favour of the Weibull distribution which might have to do
with an increasing number of ports in the sample that allows
us to distinguish more clearly between the models.

One has to bear in mind that neither Akaike weight nor
likelihood ratio test can tell us that a model is good in
an absolute sense, only that it is more plausible than its
competitors. In other words, if all our candidate models are
bad, then “in the country of the blind, the one-eyed man is
king.” We will now apply two classic goodness-of-fit tests that
show that some of our candidate models are indeed a good
match for the observations.

V. KOLMOGOROV-SMIRNOV AND ANDERSON-DARLING
TESTS

The key idea behind both the Kolmogorov-Smirnov (KS)
and Anderson-Darling (AD) test is to compare the difference



TABLE IV
THE p-VALUES FOR VUONG’S LIKELIHOOD RATIO TEST OF THE MAXIMUM-LIKELIHOOD DISTRIBUTIONS. WE SHOW ALL PAIRWISE COMPARISONS
BETWEEN TRUNCATED POWER LAW, DISCRETE LOGNORMAL AND DISCRETE WEIBULL DISTRIBUTIONS. WE HIGHLIGHT p-VALUES SMALLER THAN 0.1
IN BOLD TYPE AND ADD IN PARENTHESES THE MORE LIKELY DISTRIBUTION. VALUES BELOW 5 x 10~3 ARE ROUNDED TO ZERO.

calls degrees
Year || TPOW - DLGN | TPOW — DWEI | DLGN - DWEI || TPOW - DLGN | TPOW — DWEI | DLGN — DWEI
1890 0.83 0.49 0.20 0.09 (DLGN) 0.04 (DWEI) 0.67
1910 0.35 0.18 0.18 0.01 (DLGN) 0.01 (DWEI) 0.11
1915 0.66 0.22 0.09 (DLGN) 0.16 0.05 (DWEI) 0.84
1920 0.47 0.26 0.28 0.03 (DLGN) 0.01 (DWEI) 0.16
1925 0.52 0.94 0.34 0.35 0.09 (DWEI) 0.19
1930 0.25 0.85 0.10 0.02 (DLGN) 0.00 (DWEI) 0.64
1935 0.37 0.48 0.94 0.00 (DLGN) 0.00 (DWEI) 0.13
1940 0.19 0.15 0.35 0.00 (DLGN) 0.00 (DWEI) 0.02 (DLGN)
1946 0.59 0.66 0.93 0.30 0.18 0.97
1951 0.88 0.84 0.37 0.01 (DLGN) 0.00 (DWEI) 0.10
1960 0.64 0.86 0.10 0.02 (DLGN) 0.00 (DWEI) 0.33
1965 0.40 0.49 0.68 0.11 0.00 (DWEI) 0.55
1970 0.92 0.73 0.39 0.64 0.10 0.07 (DWEI)
1975 0.19 0.22 0.98 0.14 0.02 (DWEI) 0.72
1980 0.13 0.08 (DWEI) 0.30 0.84 0.06 (DWEI) 0.01 (DWEI)
1985 0.01 (DLGN) 0.00 (DWEI) 0.22 0.26 0.00 (DWEI) 0.08 (DWEI)
1990 0.03 (DLGN) 0.01 (DWEI) 0.18 0.56 0.10 0.00 (DWEI)
1995 0.12 0.03 (DWEI) 0.09 (DWEI) 0.29 0.17 0.00 (DWEI)
2000 0.16 0.05 (DWEI) 0.06 (DWEI) 0.39 0.32 0.00 (DWEI)
2008 0.70 0.54 0.23 0.19 0.86 0.00 (DWEI)

between the observed and hypothesized cumulative distribu-
tion functions. If the observed degree (or number of calls)
are ki, ko,...,ky, then the observed cumulative distribution
Fyps(z) is the number of ports with k; > z divided by n. The
KS statistic is defined by

Dys = |F0bs(37) - Fmodel($>|; )

max
=1,2,3,...
where Fioger 1S the cumulative distribution function of the
model to be tested [37]]. In words, Dks is the maximum abso-
lute difference between observed and hypothesized cumulative
distribution function for any possible value x. While Dkg has a
very intuitive interpretation, it also has one shortcoming when
applied to heavy-tailed distributions: |Fyps(2) — Finoder ()] is
typically maximized where Fioge1() =~ 0.5 and therefore
Dxs does not effectively sample the tail where Foger() is
close to 1. This phenomenon can be understood as follows.
If the model were correct and the difference between Fip
and Fige only the consequence of random chance, the
jackknife estimate of the standard deviation in the difference
is \/Finodel (%) [1 — Finodel(z)]/(n — 1), which has a maximum
at Fmodel(l') = 1/2

There is one obvious cure to this problem: we divide the
difference to be maximized in Eq. [ by the expected standard
deviation,

|F0bs(-73) - Fmodel(x)‘

max ,

r=1,2,3,... \/Fmodel(x)[]‘ - Fmodel(x)]

Dap = (10)

where we dropped the term +/n — 1 because it is independent
of x. Dap 1is called the Anderson-Darling statistic [38]. We
have decided to carry out tests for both Dgs and Dap
because these two statistics measure different features of the
distribution. A good model should be able to have small values
of Dgs as well as Dap.

We test the significance of the same three two-parameter
models as in the likelihood ratio test (truncated power law,
lognormal and Weibull distribution), but also include for com-
parison the Yule-Simon distribution which the Akaike weights
identified as the best one-parameter model. We calculate p-
values with Monte Carlo simulations based on the following
algorithm.

First, we determine for a given model the maximum-
likelihood parameters Vs that fit the Lloyd’s Shipping Index
data best. For the model distribution with parameters Vops
we calculate the observed test statistics Dks. obs and Dap, obs-
Next we generate n random numbers drawn from the model
distribution with parameters vop,s. We then pretend that we
do not know Vv, and determine the maximum-likelihood
parameters Vg that fit the random numbers best. In general,
Vg Will differ slightly from Vops. From the difference between
the random numbers (now treated as surrogate observation)
and the model with Vg we calculate Dgs g and Dap, md-
We repeat drawing n random numbers 10° times and estimate
the p-value pks for the KS test by the fraction of runs with
Dxs, md > Dks, obs- The same calculations are also carried out
for the AD statistic. The repeated calculation of Vg slows



down the simulation, but is necessary to mimic the steps in
the calculation of Dks, obs and Dap, obs. Otherwise we obtain
p-values with a strong downward bias that would lead us to
accept the null hypothesis (i.e. that the real data follows the
model distribution) more often than truly justified [12].

The p-values are listed in Table [V] The highlighted entries
in bold type are those cases where there is no reason to suspect
at the 10% significance level that the model is wrong, neither
in terms of the KS nor the AD statistic. It is striking that the
Yule-Simon distribution fails as a null hypothesis for call and
degree distributions in all years. The truncated power law is
accepted only for the call distribution (left half of the table)
and mostly in the early years of our data base. By contrast,
the lognormal distribution is a suitable null hypothesis for the
call distribution in all except one year (1995), and even then
the null hypothesis would not be rejected at a 5% significance
level. For the degree distribution (right half of the table), a
lognormal null hypothesis is accepted in most, but not all
years. Especially in the later years, the Weibull distribution
shows better performance than the lognormal, confirming the
trends we observed in the Akaike weights and the likelihood
ratio tests. However, the KS and AD tests in earlier years only
sporadically support a Weibull distribution.

VI. DISCUSSION

The overall picture that emerges from the KS and AD tests is
a surprisingly consistent performance of the lognormal model
for the call distribution. The only rejection, namely by the KS
test for the data of 1995, could plausibly be by random chance.
After all, at the chosen 10% significance level it is likely that
at least one false positive exists among the twenty years which
we have tested. The lognormal hypothesis also gains support
from a recent analysis of world container port throughput [39]]
that reported a good fit between the number of containers
handled at 300 top ports and a lognormal distribution. There
is also a simple mechanistic model that could explain how
a lognormal distribution might come about: Gibrat’s law of
proportionate growth [40]. It is in principle possible to carry
out further tests whether Lloyd’s Shipping Index supports the
key principle behind Gibrat’s law, namely that the growth rates
in calls are independent of the number of calls. Such a test will
make more stringent demands on the data quality than what we
currently have available. Right now such an effort would be
hampered, for example, by the irregular time intervals between
the samples. As more data becomes available, however, an
analysis of port growth rates is clearly an intriguing research
direction.

For the time being, we can instead view the call distribution
from yet another angle. As an alternative to plotting the
complementary distribution function directly as we did in
Fig. [I] economists frequently employ Lorenz curves [41] to
visualize inequality in distributions. Translated to our appli-
cation, the Lorenz curve y(x) shows the percentage of ship
calls that were made at the = percent of lowest ranked ports
(ranked by the number of calls). We plot the Lorenz curves
for three representative years in Fig. 3(a). If all ports had an

equal number of calls, the Lorenz curve would be the dashed
diagonal line. One measure of inequality is the area between
this diagonal and the actually observed Lorenz curve: the more
unequal the distribution, the larger this area. Multiplied by two,
this measure is known as Gini coefficient [42]]. The coefficient
itself as well as a jackknife estimate of its standard error
can be conveniently calculated with ordinary least-squares
regression [43]. The results for all years in our data base
(Fig. Bp) reveal that the Gini coefficient for the calls has
decreased from 0.80 in 1890 to 0.74 in 2008. Although this
is a subtle decline, it is statistically significant: the values are
more than five standard errors apart.

Why is the inequality declining? The maximum number
of calls has increased (from 822 in 1890 to 2422 in 2008),
which at first glance suggests rather an increasing inequality.
The resolution to this apparent paradox lies in the inset of
Fig. [[[b): the fraction of small ports with < 10 calls has
decreased. As the total number of ports has grown over the
years, an overproportional number of new medium-sized ports
were added to the network. Together with a flattening global
hierarchy this has reduced the gap between core and periphery,
thereby making the network more polycentric. This trend more
than compensates the growth in maximum port size and has
led to an overall decrease in the Gini coefficient.

There is more than just the Gini coefficient that we can
infer from the Lorenz curve. One complementary measure is
the Lorenz asymmetry coefficient (LAC) [44]. A Lorenz curve
is defined to be symmetric if it has the same slope as the
diagonal “line of equality” (i.e. a slope of 1) at the point where
the curve and the antidiagonal line y = 1 — x (i.e. the dotted
line in Fig. 3h) intersect. One can show that for a continuous
cumulative distribution F' with mean p the slope equals 1 at
x = F(p). At this point y = [ (z/p) dF(z), so a criterion
for symmetry is LAC = F(u) + [¢(z/p) dF(z) = 1 If
LAC < 1, the Lorenz curve is skewed such that it has slope
1 below the dotted antidiagonal. Conversely, if LAC > 1, the
Lorenz curve is parallel with the line of equality above the
antidiagonal symmetry axis.

The LAC is of interest because curves with the same Gini
coefficient can have different asymmetries. If LAC < 1, the
inequality in the distribution is caused by a large gap between
a roughly equal number of small and large ports. By contrast,
if LAC > 1, the inequality is due to a small number of
very busy ports, whereas the majority of ports experiences
approximately equally low traffic. The base case is a lognormal
distribution where LAC = 1 regardless of the parameters p
and o [44]. For the call distribution, we see in Fig. B(b) that
LAC =1 is always included in the error bar which represents
a jackknife estimate of the standard deviation. This observation
gives additional credence to the lognormal distribution as a
working hypothesis for ship calls.

3Strictly speaking, this is the definition only for a continuous distribution
F'. For discrete distributions the Lorenz curve is a polygon instead of a
smooth curve so that there is typically no point where the slope is exactly
1. However, one can generalize the definition so that it still works for the
discrete distributions obtained from finite samples, see Ref. [44] for details.



TABLE V
THE p-VALUES FOR THE KOLMOGOROV-SMIRNOV TEST pks AND THE ANDERSON-DARLING TEST pap. VALUES BELOW 5 X 10~3 ARE ROUNDED TO
ZERO. WE HIGHLIGHT THOSE DISTRIBUTIONS IN BOLD TYPE WHERE THE NULL HYPOTHESIS (I.E. THAT THE DATA IS GENERATED BY THE MODEL) IS
NOT REJECTED AT A 10% SIGNIFICANCE LEVEL.

calls degrees

Year YULE TPOW DLGN DWEI YULE TPOW DLGN DWEI

PKS  PAD PKs PAD DKS PAD DKS PAD PKS  PAD | PKS  PAD PKS PAD PKS PAD
1890 || 0.00 0.06 | 0.22 037 | 0.98 0.78 | 0.04 0.38 0.00 0.02 | 0.00 0.11 | 0.93 0.63 | 0.34 0.47
1910 || 0.00 0.04 | 0.22 0.27 | 0.72 046 | 0.01 0.18 0.00 0.00 | 0.00 0.03 [ 0.07 0.17 | 0.00 0.10
1915 || 0.00 0.04 | 0.24 0.21 | 0.81 0.69 | 0.01 0.20 0.00 0.00 | 0.00 0.06 | 0.50 0.43 | 0.03 0.31
1920 || 0.00 0.05 | 0.51 0.58 | 0.95 0.80 | 0.04 0.37 0.00 0.00 [ 0.00 0.03 | 0.18 0.37 | 0.01 0.11
1925 || 0.00 0.03 | 0.04 0.06 | 0.96 0.82 | 0.07 0.40 0.00 0.00 | 0.00 0.07 | 0.78 0.44 | 0.29 0.55
1930 || 0.00 0.03 | 0.02 0.03 | 0.84 0.70 | 0.01 0.26 0.00 0.00 | 0.00 0.02 | 0.69 0.55 | 0.02 0.28
1935 || 0.00 0.03 | 0.00 0.04 | 0.91 0.77 | 0.42 0.49 || 0.00 0.00 | 0.00 0.03 | 0.35 0.51 | 0.00 0.10
1940 || 0.00 0.04 | 0.12 040 | 0.61 064 | 0.03 0.17 0.00 0.00 | 0.00 0.02 [ 0.11 0.20 | 0.00 0.06
1946 || 0.00 0.03 | 0.02 0.02 | 0.31 0.22 | 0.03 0.10 0.00 0.00 | 0.00 0.06 | 0.30 0.30 | 0.01 0.24
1951 || 0.00 0.03 | 0.03 0.06 | 0.78 0.68 | 0.08 0.33 0.00 0.00 | 0.00 0.03 [ 0.11 0.45 | 0.00 0.08
1960 || 0.00 0.01 | 0.11 0.04 | 0.55 0.65 | 0.01 0.25 0.00 0.00 | 0.00 0.02 [ 0.03 0.22 | 0.00 0.09
1965 || 0.00 0.00 | 0.02 0.02 | 0.88 0.49 | 0.08 048 0.00 0.00 | 0.00 0.03 | 0.49 0.29 | 0.06 0.42
1970 || 0.00 0.00 | 0.07 0.03 | 0.84 0.54 | 0.00 0.23 0.00 0.00 | 0.00 0.07 | 0.23 0.25 | 0.09 0.53
1975 || 0.00 0.00 | 0.00 0.02 | 0.87 0.63 | 0.37 0.47 || 0.00 0.00 | 0.00 0.04 | 0.22 0.34 | 0.02 0.31
1980 || 0.00 0.00 | 0.00 0.01 | 0.60 0.52 | 0.20 0.75 || 0.00 0.00 | 0.00 0.04 | 0.23 0.14 | 0.21 0.75
1985 || 0.00 0.00 | 0.00 0.00 | 0.79 0.88 | 0.94 0.54 || 0.00 0.00 | 0.00 0.01 | 0.41 0.18 | 0.85 0.64
1990 || 0.00 0.00 | 0.00 0.00 | 0.26 0.46 | 0.26 0.24 || 0.00 0.00 | 0.00 0.00 | 0.02 0.09 | 0.34 0.58
1995 || 0.00 0.00 | 0.00 0.00 | 0.06 0.25 | 0.02 0.40 0.00 0.00 | 0.01 0.01 | 0.01 0.06 | 0.10 0.42
2000 || 0.00 0.00 | 0.00 0.00 | 0.60 0.25 | 0.56 0.16 || 0.00 0.00 | 0.00 0.00 | 0.09 0.07 | 0.16 0.34
2008 || 0.00 0.00 | 0.04 0.00 | 0.31 0.11 | 0.04 0.10 0.00 0.00 | 0.05 0.00 [ 0.03 0.06 | 0.00 0.18

While the lognormal model is hence a generally promising
candidate for the call distribution, it is not equally good
for the degree distribution because LAC < 1 in the later
years (Fig. Bb). These numbers confirm the results from
Tables showing that the lognormal distribution is in
those years not the best model for the degrees. There is,
however, no immediate contradiction between this finding and
a lognormal call distribution. The relationship between the call
and degree distributions is complicated: regardless whether
one or multiple voyages are made between the same two ports,
it always only adds 1 to the ports’ degrees. In other words,
the call distribution is a measure of the weighted multigraph
of voyages, whereas the degree distribution is derived from
the unweighted network that forms a so-called simple graph.
The collapse of multiple voyages into one unweighted link
can conceivably change the distribution so that it appears
to come from a completely different probabilistic law. In
future analysis, we will explore with suitable null models (e.g.
random graphs with a fixed weighted degree sequence [43])
how the degree distribution changes when a heavy-tailed (in
particular lognormal) multigraph is mapped to a simple graph
and if this may explain our observations for the cargo ship
data.

VII. CONCLUSION

We have statistically analyzed call and degree distributions
of the cargo ship network extracted from snapshots of Lloyd’s

Shipping Index in twenty different years between 1890 and
2008. We have applied information-based model selection and
statistical hypothesis tests to quantify the empirical distribution
in a mathematically principled manner. For the call distri-
bution a lognormal null model passes the Anderson-Darling
goodness-of-fit test in all years and the Kolmogorov-Smirnov
test in 19 out of 20 years at a 10% significance level. In
some early years the Akaike weight is higher for truncated
power laws than a lognormal distribution; in later years a
Weibull distribution is preferred. However, Vuong’s likelihood
ratio test does not reject the lognormal null hypothesis at a
5% significance level for any tested year, neither compared
with the maximum-likelihood truncated power law nor Weibull
distribution. When the empirical call distribution is replaced
by the degree distribution, the lognormal model is plausible
in early years, but in later years Weibull distributions fit the
data better.

As in all model selection problems, one should bear in
mind that reality is of course more complex than any of the
candidate models. In our case, it might be possible to reduce
the AIC further by allowing more than two parameters, but
we feel that two parameters are a good compromise between
simplicity of the model and goodness-of-fit. With additional
data it might become possible to analyze the dynamics of port
calls in more detail, especially to test if Gibrat’s law applies
in our case, which could explain a lognormal call distribution.
It may also become feasible to test the assumption of inde-
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(black: 1890, dark grey: 1960, light grey: 2008). The Gini coefficient measures
(dashed diagonal). The Lorenz asymmetry coefficient (LAC) measures whether

curves have a slope of 1 at the intersection with the dotted antidiagonal line (LAC < 1 if the slope equals 1 below the antidiagonal, LAC > 1 if the slope
equals 1 above it). For the three curves in the figure the Gini coefficient has decreased over time, but they all have a slope close to 1 at the symmetry axis.
(b) Gini coefficients and LACs for all twenty years for which we have data. Error bars represent jackknife estimates of the standard deviation. The Gini

coefficient for the call and degree distribution both show a slightly decreasing
LAC for the call distribution, however, shows no significant deviation from 1

pendence between ports and apply full likelihood methods to
the dynamics of the network [46].
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