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Abstract
The voter model is an archetypal stochastic process that represents opinion 
dynamics. In each update, one agent is chosen uniformly at random. The 
selected agent then copies the current opinion of a randomly selected 
neighbour. We investigate the voter model on a network with an exogenous 
community structure: two cliques (i.e. complete subgraphs) randomly linked 
by X interclique edges. We show that, counterintuitively, the mean consensus 
time is typically not a monotonically decreasing function of X. Cliques of 
fixed proportions with opposite initial opinions reach a consensus, on average, 
most quickly if X scales as N3/2, where N is the number of agents in the 
network. Hence, to accelerate a consensus between cliques, agents should 
connect to more members in the other clique as N increases but not to the 
extent that cliques lose their identity as distinct communities. We support our 
numerical results with an equation-based analysis. By interpolating between 
two asymptotic heterogeneous mean-field approximations, we obtain an 
equation  for the mean consensus time that is in excellent agreement with 
simulations for all values of X.

Keywords: voter model, community structure, consensus time, 
heterogeneous mean-field approximation, complex networks
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1.  Introduction

Opinion formation in social networks has become an active field of research in statistical 
physics (for reviews, see [1–3]). In particular, the voter model [4, 5] has become a paradig-
matic model for opinion dynamics. Its rules are simple but sufficiently powerful to reproduce 
the summary statistics of real elections [6]. In the basic version of the voter model, the vertices 
on a network represent agents that can hold exactly one of two possible opinions: ‘red’ or 
‘blue’. Repeatedly, one agent is selected independently and uniformly at random. This agent 
then adopts the opinion of a randomly chosen adjacent agent (figure 1). As long as the network 
is connected and finite, this update rule guarantees that agents must eventually reach a consen-
sus [7], defined as a state in which all agents have identical opinions.

The mean time until consensus depends on the initial distribution of opinions and the net-
work structure. While early studies of the voter model focused on complete graphs [8] or regu-
lar lattices [9], interest has recently shifted towards networks with more complex topologies, 
e.g. small-world networks [10, 11], graphs with right-skewed degree distributions [12–15], 
multiplex networks [16], or networks with a community structure [17–19].

A subgraph of a network is called a community if there are significantly more edges within 
the subgraph and fewer links to the rest of the network than those predicted by a null model 
that has no planted community structure (e.g. an Erdős–Rényi graph with the same total num-
ber of edges as the network under investigation) [20]. The detection of communities from 
network data has become a major line of research with a plethora of different algorithmic 
approaches [21]. Various techniques have confirmed that essentially all networks of practical 
relevance contain more than a single community [22–26].

This finding has motivated us to analyse the voter model for one of the simplest pos-
sible types of multi-community networks—namely, networks with exactly two communi-
ties. Situations where agents divide into two communities are plentiful in the real world. For 
example, a split between communities may arise because of a language barrier (e.g. between 
Dutch and French speakers in Belgium [27]) or differences in race, ethnicity, age, religion, 
education, occupation, or gender [28]. Conversely, agents with similar attributes tend to form 
close-knit communities because of status homophily [29], a social phenomenon that causes 
the proverbial birds of a feather to flock together. Within communities, cohesion often reaches 
such an extent that ‘we can observe in many groups a social unity within which people feel at 
one though their opinions still differ’ (p 229 in [30]).

Previously, it has been claimed that the voter model is insensitive to changes in the commu-
nity structure [31]. This conclusion has mainly rested on results for two equally large cliques 
(i.e. complete subgraphs), where the mean consensus time is proportional to the total number 
of vertices in the network, N, unless the connections between cliques are extremely sparse [18, 
32]. Here, we argue that an investigation of only the special case of equally large cliques does 
not do justice to the actual complexity of the problem.

In this article, we revisit the two-clique voter model but allow unequal clique sizes. The 
dynamics exhibit an intriguing feature: the mean consensus time is minimal at an intermediate 
interclique connectivity. We investigate in detail the case where cliques with given relative 
sizes start from opposite opinions, representing a completely polarised society. To minimise 
the mean consensus time, we find that the optimal number of interclique edges, Xmin, should 
scale in proportion to N3/2. This scaling law puts Xmin between the case of a constant number 
of interclique links per agent (X ∝ N ) and a complete graph (X ∝ N2).

After specifying the details of our model in section 2, we present the results from numer
ical simulations in section 3. In section 4, we derive an analytical expression for the mean 
consensus time as a function of X for arbitrary clique sizes. Our derivation demonstrates how 
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we can go beyond previous approximations [18, 33] to obtain not only the asymptotic behav-
iour for either extremely sparsely or densely connected cliques, but also reliable predictions 
for the intermediate interclique connectivity. We conclude with a discussion of our results in 
section 5.

2.  Model

We consider a simple undirected graph with N vertices that can be partitioned into two cliques, 
as shown in figure 1. We denote the fraction of vertices in the first clique by α ∈ (0, 1). The 
two cliques are connected by X edges randomly selected from all α(1 − α)N2 possible pairs 
that can be formed by one vertex in clique 1 and another vertex in clique 2.

Each vertex is either red or blue depending on the current opinion of the corresponding 
agent. The time intervals between consecutive opinion updates are independent, identically 
distributed exponential random numbers so that the dynamics are a continuous-time Markov 
chain. We choose the time unit such that every individual agent is active with a rate equal to 1.

If we wish to keep track of all individual opinions, the cardinality of the model’s state space 
is 2N. The Monte Carlo algorithm behind all numerical data presented in this paper is in fact 
based on this exact agent-based paradigm. However, summarising and modelling the results at 
such a fine level of resolution is neither insightful nor practical given that the number of con-
figurations grows exponentially with N. Instead, we combine all configurations whose fraction 
of red agents is ρ1 in clique 1 and ρ2 in clique 2 into the macrostate (ρ1, ρ2) to simplify the data 
analysis, visualisation, and mathematical modelling. Strictly speaking, the Markov chain is 
not lumpable at this macroscopic level [34] because we neglect the fact that different vertices 
in a clique can be adjacent to a different number of vertices in the other clique. Let us denote 
the number of interclique edges incident on a vertex v by kinter,v. The probability distribution 
of kinter,v is approximately binomial; thus, it is so concentrated near its peak that we withhold 
little information if we replace the exact value kinter,v with its mean: kinter,v ≈ X/(αN) for all 
vertices v in clique 1 and kinter,v ≈ X/[(1 − α)N] for every v in clique 2. In the parlance of 
statistical physics, we apply a heterogeneous mean-field approximation [7, 35]: we correctly 
account for the difference in the clique sizes and replace the exact microscopic interactions 

Clique 1 Clique 2

A

B
C

Figure 1.  Illustrative example of a small two-clique network. In this example, clique 
1 is a complete subgraph with seven vertices (circles), whereas clique 2 has only five 
vertices (squares). Each vertex represents an agent that has exactly one of two possible 
opinions: ‘red’ or ‘blue’. We apply the update rules of the voter model. That is, we 
first choose a random focal vertex, e.g. A, in the depicted network. Then, we choose a 
random neighbour of the focal vertex and copy the neighbour’s opinion. In our example, 
if the chosen neighbour is B, A changes its opinion to blue. If the chosen neighbour is 
C, A keeps its current (i.e. red) opinion. We distinguish between intraclique edges (thin 
lines) and interclique edges (thick lines). In our analysis, we vary the relative sizes of 
the two cliques and the number of interclique edges.
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with an average over the cliques. More elaborate approximations are conceivable [18], but the 
mean-field approximation is remarkably accurate, as we will see shortly. On balance, we do 
not find the notational burden of a more detailed approximation to be worth the effort.

Applying these simplifications, we can derive the transition rate matrix Q. For example, 
if a blue agent in clique 1 becomes red, the state changes from (ρ1, ρ2) to 

(
ρ1 +

1
αN , ρ2

)
. This 

transition occurs with a rate that is the product of the following two factors. The first factor is 
the number of blue agents in clique 1, which is equal to αN(1 − ρ1). The second factor is the 
fraction of adjacent agents whose opinion is red. Because an agent in clique 1 is connected 
to αN − 1 agents in clique 1 and, on average, to X/(αN) agents in clique 2, we obtain the 
transition rate

Q
[
(ρ1, ρ2),

(
ρ1 +

1
αN

, ρ2

)]
= αN(1 − ρ1) ·

(αN − 1)ρ1 +
X
αN ρ2

αN − 1 + X
αN

.

With similar arguments, we can also deduce the remaining elements of Q. In table 1, we list all 
nonzero transition rates. As is convention, we set the diagonal terms of Q equal to the negative 
sum of all other terms in that row [36]: Q(ρ,ρ) = −

∑
ρ′ �=ρ Q(ρ,ρ′), where ρ = (ρ1, ρ2). For 

our simulations, we apply the exact agent-based update rules of the voter model and take the 
exact network topology into account where the degrees are not the same for all vertices in a 
clique. For the analytical solution in section 4, however, we resort to the approximations that 
are implicit in Q.

3.  Simulation results

To build intuition about the model, we show how the dynamics unfold during several sample 
runs with N  =  500 and α = 0.8 in figure 2. We start the cliques in a state of complete polarisa-
tion: within each clique, opinions are initially unanimous, but there is disagreement between 
cliques so that either (ρ1, ρ2) = (1, 0) or (ρ1, ρ2) = (0, 1).

In figure 2(a), there are only X  =  10 interclique edges; thus, it is difficult for an opinion to 
invade the clique that started from the opposite opinion. Fluctuations occur in only one clique 
at a time. Meanwhile, the other clique remains almost unwavering in its support of its starting 

Table 1.  Transitions from the state (ρ1, ρ2) and their rates.

New state (y, z)
How is the new state 
reached? Transition rate matrix element Q[(ρ1, ρ2), (y, z)]

(
ρ1 +

1
αN , ρ2

)
A blue agent in clique 1 
adopts the opinion of a red 
agent.

αN(1 − ρ1) · αN(αN−1)ρ1 + Xρ2
αN(αN−1)+ X

(
ρ1 − 1

αN , ρ2
)

A red agent in clique 1 
adopts the opinion of a blue 
agent.

αNρ1 · αN(αN−1)(1−ρ1)+ X(1−ρ2)
αN(αN−1)+ X

(
ρ1, ρ2 +

1
(1−α)N

)
A blue agent in clique 2 
adopts the opinion of a red 
agent.

(1 − α)N(1 − ρ2) · (1−α)N[(1−α)N−1]ρ2 + Xρ1
(1−α)N[(1−α)N−1] + X

(
ρ1, ρ2 − 1

(1−α)N

)
A red agent in clique 2 
adopts the opinion of a blue 
agent.

(1 − α)Nρ2 · (1−α)N[(1−α)N−1](1−ρ2)+ X(1−ρ1)
(1−α)N[(1−α)N−1] + X

(ρ1, ρ2) Negative sum of all rates above.
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opinion. As a consequence, the trajectory shown in figure 2(a) mostly remains around the 
edges of the two-dimensional state space (ρ1, ρ2) ∈ [0, 1]2. After a protracted tug of war, con-
fidence in the starting opinion ultimately vanishes in one of the cliques—usually the smaller 
one, with a probability that we will quantify in equation (7) below—so that the system reaches 
one of the two absorbing states (0, 0) or (1, 1).

By contrast, if X = 10 000, the proportions of red agents ρ1 and ρ2 rapidly approach equal-
ity, as shown in figure 2(b). Afterwards, the dynamics in one clique almost instantaneously 
follow the trends in the other clique so that the trajectory is confined to the vicinity of the 
diagonal line ρ1 = ρ2. In this case, the cliques behave as one integrated entity despite being 
only loosely connected by the network topology.

The distinct behaviours of the model for small and large X lead to substantially different 
consensus times, which are evident when comparing the limits of the colour bar legends in 
figures 2(a) and (b). For X = O(1), it can take an extremely long time to reach a consensus 
because the cliques hardly exchange any opinions. If X � 1, the cliques communicate more 
frequently with each other and therefore typically agree on a final opinion sooner. However, 
the mean consensus time does not necessarily monotonically decrease with X, as we will now 
see.

We denote the consensus time from the completely polarised initial state (ρ1, ρ2) = (1, 0) 
by Tpol and its mean by 〈Tpol〉, which is an average over different realisations of the stochas-
tic voter-model dynamics and over different randomly sampled networks with X interclique 
edges. In figure 3(a), we show simulation results for 〈Tpol〉 as a function of X for N  =  1000 and 
different values of α. Because the dynamics for α and 1 − α are identical if we exchange the 
labels of the cliques and opinions, we only plot results for α � 1

2. For all values of α, 〈Tpol〉 
attains its maximum at X  =  1 and initially decreases as we insert more interclique edges, con-
sistent with the intuition that more connections lead to a faster consensus. Surprisingly, how-
ever, if α �= 1

2, the trend reverses as we keep increasing X: 〈Tpol〉 passes through a minimum 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ρ1

ρ 2

0

1000

2000

Time

(a)  X = 10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ρ1

ρ 2

0

100

200

300

Time

(b)  X = 10 000

Figure 2.  Example trajectories for a two-clique graph with N  =  500 vertices and 
α = 0.8 (i.e. 400 vertices are in the first clique, 100 in the second). Triangles and circles 
represent different sample runs of the dynamics. To avoid overplotting, we only show 
approximately 50 points during each run. (a) With only X  =  10 interclique edges, 
the states remain close to the boundaries of the plot (i.e. at least one of the cliques 
is internally almost unanimous). (b) If X = 10 000, the system rapidly moves from a 
state of complete polarisation (top-left or bottom-right corner) towards the diagonal line 
(ρ1 = ρ2). The trajectory then remains near the diagonal line until it reaches one of the 
two consensus states in the top-right or bottom-left corner of the plot.
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and then increases again as the network becomes a complete graph, where X = α(1 − α)N2. 
This increase is more pronounced when the difference in clique sizes is larger. For α = 0.9, 
we can reduce the mean consensus time by ≈ 76% if we cut ≈ 98% of the interclique ties in 
the complete graph.

102
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100 102 104

X

〈T
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l〉

α
0.5
0.8
0.9

(a)  N = 1000

101
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104

100 102 104

X

〈T
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l〉
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(b)  α = 0.9
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τ

(c)
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104

102 103
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X
m

in

α
0.7
0.8
0.9

(d)

Figure 3.  Dependence of the mean consensus time 〈Tpol〉 on the number of interclique 
edges X. Each point represents numerical data from 2000 Monte Carlo simulations with a 
polarised initial condition (i.e. cliques are internally unanimous, but the cliques disagree 
with each other). Error bars represent 95% confidence intervals. All curves illustrate 
predictions from the equation-based method described in section  4. We emphasise 
that there are no free parameters in the equations; hence, none of the curves shown 
here needed to be fitted to data. (a) We fix N  =  1000 and vary α. (b) We hold α = 0.9 
constant, but N varies. (c) The same data as in (a) and (b) but with rescaled coordinate 

axes. We plot ξ = X/N along the horizontal axis and τ =
(

1
α2 +

1
(1−α)2

)
〈Tpol〉/N  

along the vertical axis. The dashed line represents the reciprocal relationship τ = 1/ξ . 

(d) The number of edges Xmin that minimises 〈Tpol〉 follows the power law Xmin ∝ N3/2 
predicted by equation (14).
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In figure 3(b), we fix α = 0.9 and vary N. In general, an increase in N shifts the curves 
towards larger values of 〈Tpol〉 and X. However, the curves’ overall shapes remain similar. The 
common pattern behind the data plotted in figures 3(a) and (b) becomes clearer in figure 3(c), 

where we plot the rescaled variable τ =
(

1
α2 +

1
(1−α)2

)
〈Tpol〉/N  versus ξ = X/N. For ξ � 1, 

the rescaled functions collapse onto the same function τ = 1/ξ . The scaling relation τ ∝ 1/ξ  
was pointed out for the special case α = 1

2 in [18]. Our simulations and the equation-based 
analysis in section 4 show that τ  and 1/ξ are not merely proportional but equal in the limit 
ξ → 0. This result is valid for all clique sizes assuming a completely polarised initial state. For 
other initial conditions, we also find that τ ∝ 1/ξ  but with different proportionality factors, 
which can be calculated with the method presented in section 4.

Figure 3(d) reveals another emergent scaling relation. In this scatterplot, the abscissa is the 
network size N. The ordinate is the number of interclique edges Xmin that minimises 〈Tpol〉. 
For each combination of N and α in figure 3(d), we perform 2000 Monte Carlo simulations. 
We then estimate Xmin from the locally estimated scatterplot smoothing (LOESS) regression 
curves and establish error bars with bootstrapping. For a fixed value of α, the data follow the 
power law Xmin ∝ N3/2. Thus, to minimise the mean consensus time, the agents must strike 
a balance between a sparse and a dense interclique connectivity. On one hand, the optimal 
number of interclique links per agent grows as kinter,v ∝

√
N . On the other hand, the optimal 

number of interclique edges Xmin is only a vanishing fraction of the number α(1 − α)N2 of all 
possible interclique edges in the limit N → ∞.

In summary, the Monte Carlo simulations reveal three main features of the two-clique voter 
dynamics starting from cliques with opposite opinions. First, 〈Tpol〉 is a U-shaped function of 
X as long as α �= 1

2. Notably, the global minimum does not coincide with a complete graph. 
Second, the mean consensus time obeys the identity τ = 1/ξ  or, equivalently,

〈Tpol〉 =
α2(1 − α)2

2α2 − 2α+ 1
N2

X
� (1)

as long as X � N . Third, the number of interclique edges that minimises 〈Tpol〉 satisfies the 
scaling relation Xmin ∝ N3/2. We now demonstrate how these results can be derived from the 
transition rates in table 1.

4.  Equation-based analysis

Let us denote the mean consensus time conditioned on the initial opinions (ρ1, ρ2) by 
〈T(ρ1, ρ2)〉. With this notation, 〈Tpol〉 = 〈T(1, 0)〉. Because 〈T(ρ1, ρ2)〉 is the mean exit time of 
a Markov chain with absorbing states (0, 0) and (1, 1), it must satisfy 〈T(0, 0)〉 = 〈T(1, 1)〉 = 0 
and [36]

∑
y,z

Q[(ρ1, ρ2), (y, z)]〈T(y, z)〉 = −1

if (ρ1, ρ2) �∈ {(0, 0), (1, 1)}. Next, we insert Q from table 1 and perform, in the parlance of 
mathematical population genetics, a diffusion approximation [37]: we assume N � 1 and 
take the continuum limit. The result is the partial differential equation

M T Gastner and K Ishida﻿J. Phys. A: Math. Theor. 52 (2019) 505701
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(αN − 1)ρ1(1 − ρ1) +
X

2αN (ρ1 + ρ2 − 2ρ1ρ2)

αN(αN − 1) + X
∂2〈T〉
∂ρ2

1

+
[(1 − α)N − 1]ρ2(1 − ρ2) +

X
2(1−α)N (ρ1 + ρ2 − 2ρ1ρ2)

(1 − α)N[(1 − α)N − 1] + X
∂2〈T〉
∂ρ2

2

+
X

αN(αN − 1) + X
(ρ2 − ρ1)

∂〈T〉
∂ρ1

+
X

(1 − α)N[(1 − α)N − 1] + X
(ρ1 − ρ2)

∂〈T〉
∂ρ2

+ O(N−2)

= −1.

�

(2)

Finding an exact solution to equation (2) would be a formidable task, but the result would 
not be directly useful. Instead, we aim for an approximate solution. First, we find a solu-
tion that is valid if X = O(N). Afterwards, we derive an approximation for the case where 
X � N . Finally, we interpolate between these two approximations to arrive at a solution that 
fits the data remarkably well over the entire range from X  =  1 to the complete graph with 
X = α(1 − α)N2. The solid curves in figure 3 are based on this interpolation.

4.1.  Approximate solution if X = O(N)

For a sparse interclique connectivity, the leading terms of equation (2) up to and including 
O
(
N−1

)
 are

1
αN

ρ1(1 − ρ1)
∂2〈T〉
∂ρ2

1
+

1
(1 − α)N

ρ2(1 − ρ2)
∂2〈T〉
∂ρ2

2

+
X

α2N2 (ρ2 − ρ1)
∂〈T〉
∂ρ1

+
X

(1 − α)2N2 (ρ1 − ρ2)
∂〈T〉
∂ρ2

= −1.
�

(3)

We are not aware of an exact solution to equation (3), but we assume that it can be expressed 
as a power series. The main features already become apparent when only expanding up to the 
quadratic terms. We denote this approximation by tsparse  to indicate that this expression is valid 
if we only have a sparse connectivity between cliques:

tsparse(ρ1, ρ2) =

2∑
i=0

2∑
j=0

ci,j

(
ρ1 −

1
2

)i (
ρ2 −

1
2

) j

.� (4)

Because 〈T〉 is symmetric with respect to 
( 1

2 , 1
2

)
, we must have ci,j   =  0 if either i is odd and j  

is even or vice versa. Only five coefficients remain that can possibly be nonzero: c0,0, c0,2, c1,1, 
c2,0, and c2,2. We can determine these coefficients from equation (3) and the boundary condi-
tions. We skip the details here and instead refer to the appendix, where we show that

〈Tpol〉 ≈ tsparse(1, 0) = −1
2

c1,1

=
α2(1 − α)2N
Xd(α, N, X)

[
2(2α2 − 2α+ 1)X3 + 2(α2 − α+ 1)NX2

+ α(1 − α)(2α2 − 2α+ 3)N2X + α2(1 − α)2N3]
�

(5)

M T Gastner and K Ishida﻿J. Phys. A: Math. Theor. 52 (2019) 505701
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with the auxiliary function

d(α, N, X) =(3α2 − 3α+ 1)(2α2 − 2α+ 1)X2

+ α(1 − α)(4α4 − 8α3 + 11α2 − 7α+ 2)NX

+ α2(1 − α)2(2α2 − 2α+ 1)N2

� (6)

in the denominator.
In figure 4, we compare the numerical data for α = 0.9 and N  =  1000 with the approx

imation in equation (5), shown as a dotted line. In the limit X/N → 0, tsparse  is an excellent fit 
because the asymptotic behaviour of equation (5) is consistent with equation (1). For large X, 
however, equation (5) predicts a consensus time that is too short. To resolve this problem, we 
now derive an approximation that is more suitable if X is large.

4.2.  Approximate solution if X � N

The probability of reaching a red consensus from the initial condition (ρ1, ρ2) is, in general, 
given by the martingale m(ρ1, ρ2) that satisfies m(0, 0) = 0, m(1, 1) = 1 and [36]

∑
y,z

Q[(ρ1, ρ2), (y, z)]m(y, z) = 0

for all (ρ1, ρ2) �∈ {(0, 0), (1, 1)}. By inserting the formulae for the elements of Q from table 1, 
we can verify that the solution is

m(ρ1, ρ2) =
(α2N2 − αN + X)ρ1 + [(1 − α)2N2 − (1 − α)N + X]ρ2

(2α2 − 2α+ 1)N2 − N + 2X
.� (7)

This result is valid regardless of whether X is small or large.
If the cliques are densely connected, we have seen in figure 2(b) that we can assume that 

ρ1 = ρ2 after a short transient. Similar adiabatic approximations have been applied, e.g. in 
[12, 32, 33, 38, 39]. By inserting ρ1 = ρ2 into equation (7), it follows that the fraction of red 
agents in each clique is equal to m. Thus, we can substitute m for ρ1 and ρ2 in equation (3). 
Bearing in mind that

∂2〈T〉
∂ρ2

i
=

∂2m
∂ρ2

i

d〈T〉
dm

+

(
∂m
∂ρi

)2 d2〈T〉
dm2

for i ∈ {1, 2} and keeping only the leading-order terms, we obtain the following second-order 
ordinary differential equation:

α(1 − α)N2[(3α2 − 3α+ 1)N2 + 2X] + X2

α(1 − α)N[(2α2 − 2α+ 1)N2 + 2X]2
m(1 − m)

d2〈T〉
dm2 = −1.� (8)

We call the solution to equation (8) tdense, where the subindex ‘dense’ expresses that the 
equation is derived under the assumption that X � N . The absorbing boundary condition

tdense(m = 0) = tdense(m = 1) = 0

uniquely determines the solution

tdense(m)

= − α(1 − α)N[(2α2 − 2α+ 1)N2 + 2X]2

α(1 − α)N2[(3α2 − 3α+ 1)N2 + 2X] + X2 [m lnm + (1 − m) ln(1 − m)].
� (9)
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Figure 4 confirms that tdense fits the data from the Monte Carlo simulations in the range X � N . 
In particular, tdense correctly predicts an increasing mean consensus time for large X. A closer 
look at equation (9) reveals that tdense increases because the minority opinion gains a slightly 
higher probability of winning. For a polarised initial condition on a network with N  =  1000 
and α = 0.9, we find that m(1, 0) ≈ 0.98 if X  =  1, but m(1, 0) = 0.9 if the graph is complete 
(i.e. X = 90 000). Hence, the blue minority increases its probability of winning from 2% to 
10%. At first glance, the difference in m may seem to be small, but its effect is amplified by 
the nearby singularity of the function ln(1 − m), which appears on the right-hand side of 
equation (9). As a consequence, tdense increases by a factor of approximately 5.4 as X increases 
from 1 to 90 000. We conclude that networks designed for a fast consensus must strike a 
compromise between two opposing trends. On one hand, frequent opinion exchanges between 
the cliques are necessary to quickly agree on the same opinion. On the other hand, additional 
interclique edges give the minority clique greater influence, causing more self-doubt within 
the majority clique and consequently slower convergence towards a shared opinion.

4.3.  Derivation of Xmin ∝ N3/2

While tdense is an excellent approximation of the simulated data if X � N , it unfortunately 
underestimates the true value of 〈T〉 in the range X  <  N. In this sense, tdense is the opposite of 
tsparse  from section 4.2: we found that tsparse  approximates 〈T〉 well for small X but substantially 
deviates for large X (figure 4). To obtain the benefits of both tdense and tsparse  but none of their 
disadvantages, we construct an interpolation tinterp as follows. We first add tdense and tsparse  and 
then subtract the asymptotic value of tsparse  in the limit of a dense interclique connectivity:

102

103

104

100 102 104

X

〈T
po

l〉

Approximation
t sparse

tdense

t interp

Figure 4.  Illustration of the approximations for 〈Tpol〉 presented in section 4. As an 
example, we show data for N  =  1000 and α = 0.9 as open circles. Each circle represents 
the mean of 2000 Monte Carlo simulations. The error bars are 95% confidence intervals. 
The approximation tsparse , given by (5) and shown as a dotted line, fits the data well if the 
cliques are sparsely connected (i.e. X  <  N) but loses accuracy if we insert more edges 
between cliques. Equation  (9) presents the alternative approximation tdense (dashed 
line), which is a much better estimate than tsparse  if X  >  N but is worse for a sparse 
interclique connectivity. In (10), we define an interpolation tinterp that asymptotically 
behaves like tsparse  for small X and tdense for large X. Even for intermediate X, tinterp 
closely approximates the simulation data (solid line).
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tinterp(ρ1, ρ2, X)

= tdense[m(ρ1, ρ2, X), X] + tsparse(ρ1, ρ2, X)− lim
X′→∞

tsparse(ρ1, ρ2, X′),� (10)

where we have explicitly included X among the independent variables. This interpolation 
approximates the true value of 〈T〉 in the limit of a minimal or maximal interclique connectiv-
ity and is also an excellent approximation for all intermediate values of X. The solid curves in 
figures 3(a), (b), and 4 confirm that tinterp fits well for all X.

Equipped with an approximation of 〈T〉, we can now determine how many edges must be 
inserted between polarised cliques to minimise the mean consensus time. From equation (10) 
and the condition ∂tinterp/∂X = 0 for the minimum, it follows that we are looking for the solu-
tion Xmin of the equation

∂tsparse(1, 0, X)
∂X

= −∂tdense(1, 0, X)
∂X

.� (11)

To simplify the calculation, let us assume that Xmin increases between linearly and quadrati-
cally in N. Expressed in formal notation, we assume that 1 � N = o(Xmin) and Xmin = o

(
N2

)
. 

In this case, we can expand tsparse/N and tdense/N  as Taylor series in terms of N/X and X/N2, 
respectively. Rearranging equations (5) and (9), we find that

tsparse(1, 0, X)
N

=
2α2(1 − α)2

3α2 − 3α+ 1

+
2α2(1 − α)2(2α4 − 4α3 + 6α2 − 4α+ 1)

(3α2 − 3α+ 1)2

N
X

+ O

[(
N
X

)2
]

,

�

(12)

tdense(1, 0, X)
N

=
2α2 − 2α+ 1
3α2 − 3α+ 1

[(2α2 − 2α+ 1) ln(2α2 − 2α+ 1)

− 2α2 ln(α)− 2(1 − α)2 ln(1 − α)]

+
2(1 − 2α)

(3α2 − 3α+ 1)2 [(4α
3 − 5α2 + 3α− 1) ln(α)

+ (4α3 − 7α2 + 5α− 1) ln(1 − α)

+ (1 − 2α)(2α2 − 2α+ 1) ln(2α2 − 2α+ 1)]
X
N2

+ O

[(
X
N2

)2
]

.

�

(13)

We now combine equations (11)–(13) and drop the higher-order terms. The result is

Xmin = α(1 − α)

√
2α4 − 4α3 + 6α2 − 4α+ 1

q(α)
N3/2� (14)

with

q(α) = (1 − 2α) [(4α3 − 5α2 + 3α− 1) ln(α)

+ (4α3 − 7α2 + 5α− 1) ln(1 − α)

+ (1 − 2α)(2α2 − 2α+ 1) ln(2α2 − 2α+ 1)].
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Figure 3(d) confirms that the predicted Xmin (straight line) is in good agreement with the 
simulation data.

5.  Discussion

In this article, we have studied the voter model for one of the simplest types of community 
structure: two cliques connected by a fixed number of edges. Previously, equations were only 
available for the special case of two equally large cliques. Even for this special case, only the 
asymptotic behaviour for either an extremely sparse or extremely dense interclique connectiv-
ity was known [18]. Here, we have introduced a heterogeneous mean-field approximation and 
an interpolation technique that allow us to treat cliques of unequal sizes. Furthermore, equa-
tion (10) makes a prediction for the mean consensus time that goes beyond a mere scaling law 
with an unknown proportionality constant. Instead, we can calculate concrete numbers that 
are in excellent agreement with Monte Carlo simulations for any number of interclique edges, 
X, including cases where the adiabatic approximation at the heart of [12, 32, 33, 38, 39] fails. 
In particular, equation (14) predicts the number of interclique edges, Xmin, necessary to mini-
mise the mean consensus time. Our derivation of equation (14) reveals that, at the optimum, 
the smaller clique must be exposed to the majority opinion, but we must not allow the smaller 
clique to influence the larger clique too strongly. The result Xmin ∝ N3/2 exemplifies how our 
methodology is able to answer a sociological question with a specific and surprising quantita-
tive prediction.

We have considered the scenario where the cliques have different sizes, consistent with 
empirical observations that community size distributions tend to be highly heterogeneous 
[40, 41]. Still, real community structures are considerably more complex than our model. 
For example, communities in real networks are typically much sparser than cliques [40]. 
Moreover, real communities are not necessarily as clearly separated from each other as in our 
model. Instead, the boundaries between communities are often fuzzy so that vertices can often 
not be uniquely attributed to a single community [41]. Even if communities do not overlap, it 
is highly restrictive to assume that their number is exactly equal to two.

Besides assuming a stylised network topology, we have also applied a particularly simple 
update rule. In our model, agents can choose between only two different opinions, which 
must be truthfully signalled to all neighbours. A more sophisticated model may distinguish 
between private and publicly displayed opinions [39], thereby giving agents the opportunity to 
be hypocrites (i.e. they may represent an opinion in public that is contrary to their inner belief) 
[42]. If there are more than two possible opinions, yet more complex update rules are conceiv-
able [43]. Further potential model variants include zealots who never change their opinions 
[19, 44, 45] or agents who query more than a single neighbour before switching opinions [46, 
47]. Updates may happen simultaneously instead of asynchronously [48]. The distribution of 
waiting times between updates may be more right-skewed than an exponential distribution 
[49, 50]. There may even be different waiting time distributions for different agents [51] or 
different rates of opinion exchange along different edges [15]. These and many more modifi-
cations of the basic voter model have been previously studied [5]. It would be interesting to 
investigate how the two-clique topology influences the dynamics in these cases.

The voter model is not only relevant in the context of opinions in social networks. It can 
also be interpreted as a model for language evolution [52, 53], where the state of an agent is 
a linguistic token instead of an opinion. In this context, a two-clique topology may represent 
a society that is split into two groups because of geography (e.g. a language island separated 
from the mainland). While a quick consensus may be preferable in the context of opinion 
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formation, the extinction of language variants is a cultural loss that should be avoided or at 
least delayed. Because the deliberate removal of interclique edges can hardly be socially desir-
able, our model suggests that the best way to extend the lifetime of a language variant is to 
increase the size of the minority clique.

Even before the voter model appeared in the sociological and physics literature, it had 
been introduced in biology, albeit under different names. For example, the Moran process 
represents the spread of alleles in a population with a model that is—at least for the panmic-
tic population considered in Moran’s 1958 paper [8]—equivalent to the voter model. Other 
biologists have interpreted the two-dimensional voter model as a competition for territory 
between species [9, 54]. From a biological perspective, the voter model on a network with 
two communities may be viewed at first glance as a direct implementation of Wright’s island 
model, where ‘the total population is assumed to be divided into subgroups, each breeding at 
random within itself, except for a certain proportion of migrants’ [55]. Still, there is a subtle 
but important difference between the voter model and the Moran process (also known as the 
invasion process [32]). When interpreted in the context of opinion formation, it makes sense to 
assume that the focal agent adopts the opinion of a random neighbour. In biology, by contrast, 
the interaction between the focal vertex and its neighbour is usually in the opposite direction: 
the offspring of the focal vertex spreads the parent’s state to a neighbouring site. On a degree-
regular network (e.g. a complete graph, as in Moran’s paper [8]), both update rules lead to 
the same stochastic process. For heavy-tailed degree distributions, however, the two update 
rules are known to result in substantially different dynamics [12, 32, 56]. The degree distri-
bution of a two-clique network is not heavy-tailed but bimodal with peaks at αN + X/(αN) 
and (1 − α)N + X/[(1 − α)N]. Whether this topology causes a difference between the voter 
model and the Moran process is a question for future research. The methodology we have 
presented in this article opens the door to such studies of voter-like models for networks with 
a community structure.
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Appendix.  Derivation of equation (5)

We are looking for a solution to equation (3) by expanding 〈T〉 as a Taylor series:

〈T(ρ1, ρ2)〉 =
∞∑

i=0

∞∑
j=0

ci,j

(
ρ1 −

1
2

)i (
ρ2 −

1
2

) j

,� (A.1)

where the coefficients ci,j  can be determined from equation (3) and the boundary conditions. 
In equation (A.1), we have chosen to expand 〈T〉 around (ρ1, ρ2) =

( 1
2 , 1

2

)
 because it is a point 

of symmetry: the dynamics remain identical if we interchange red and blue opinions. For this 
reason, we must have ci,j   =  0 whenever either i is odd and j  is even or vice versa. Hence,
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〈T(ρ1, ρ2)〉 = c0,0 + c2,0

(
ρ1 −

1
2

)2

+ c1,1

(
ρ1 −

1
2

)(
ρ2 −

1
2

)
+ c0,2

(
ρ1 −

1
2

)2

+c2,2

(
ρ1 −

1
2

)2 (
ρ2 −

1
2

)2

+ higher-order terms.

We drop the higher-order terms (i.e. those with exponents � 3) and denote this approximation 
of 〈T〉 by tsparse , just as we did in equation (4). Inserting tsparse  into (3) and comparing the con-
stant terms on the left- and right-hand sides of the equation, we find that

(1 − α) c2,0 + α c0,2 = −2α(1 − α)N.� (A.2)

The blue consensus (ρ1, ρ2) = (0, 0) is an absorbing state; therefore, we demand that 
tsparse(0, 0) = 0 or, equivalently,

16c0,0 + 4 (c2,0 + c1,1 + c0,2) + c2,2 = 0.� (A.3)

In the polarised corner of the state space with the coordinates (ρ1, ρ2) = (1, 0) and along the 
boundaries (ρ1, 0) and (0, ρ2) with ρ1 �∈ {0, 1} and ρ2 �∈ {0, 1}, respectively, we find similar 
identities for the coefficients ci,j  by evaluating equation (3). Combining these identities with 
equations (A.2) and (A.3), we reach the following system of linear equations:



0 1 − α 0 α 0
16 4 4 4 1
0 −4(1 − α)2X 2(2α2 − 2α+ 1)X −4α2X −(2α2 − 2α+ 1)X
0 4α(1 − α)2N 2(1 − α)2X −4α2X α(1 − α)2N
0 −4(1 − α)2X 2α2X 4α2(1 − α)N α2(1 − α)N







c0,0

c0,2

c1,1

c2,0

c2,2




= −2α(1 − α)N




1
0

2α(1 − α)N
4α(1 − α)N
4α(1 − α)N




.

Its solution is

c0,0 =
N

4Xd(α, N, X)

[
2(2α2 − 2α+ 1)3X3 + α(1 − α)(α2 − α+ 1)(9α2 − 9α+ 4)NX2

− 2α2(1 − α)2(α2 − α− 1)(α2 − α+ 1)N2X + 2α4(1 − α)4N3],

c2,0 = − α4N
d(α, N, X)

[
2(2α2 − 2α+ 1)X2 + 2(1 − α)(2α2 − α+ 1)NX

+ (1 − α)2(2α2 − α+ 1)N2],

c1,1 = −2α2(1 − α)2N
Xd(α, N, X)

[
2(2α2 − 2α+ 1)X3 + 2(α2 − α+ 1)NX2

+ α(1 − α)(2α2 − 2α+ 3)N2X + α2(1 − α)2N3],
�

(A.4)

c0,2 = − (1 − α)4N
d(α, N, X)

[
2(2α2 − 2α+ 1)X2 + 2α(2α2 − 3α+ 2)NX

+ α2(2α2 − 3α+ 2)N2],
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c2,2 = −4α2(1 − α)2N2

d(α, N, X)

[
(3α2 − 3α+ 1)X + α(1 − α)(2α2 − 2α+ 1)N

]
,

where d(α, N, X) is given by equation (6).
In the special case of a polarised initial condition, equation (A.1) can be simplified thanks 

to equation (A.3):

〈Tpol〉 ≈ tsparse(1, 0) = c0,0 +
1
4
(c0,2 − c1,1 + c2,0) +

1
16

c2,2

= −1
2

c1,1.
� (A.5)

Upon inserting equation (A.4) into equation (A.5), we obtain equation (5).
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