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Abstract. We study spatial networks that are designed to distribute or collect
a commodity, such as gas pipelines or train tracks. We focus on the cost of a
network, as represented by the total length of all its edges, and its efficiency in
terms of the directness of routes from point to point. Using data for several
real-world examples, we find that distribution networks appear remarkably close
to optimal where both these properties are concerned. We propose two models
of network growth that offer explanations of how this situation might arise.
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1. Introduction

A network is a set of points or vertices joined together in pairs by lines or edges. Networks
provide a useful framework for the representation and modelling of many physical,
biological, and social systems, and have received a substantial amount of attention in
the recent physics literature [1]-[3]. In this paper we study networks in which the vertices
occupy particular positions in geometric space. Not all networks have this property—
web pages on the world wide web, for example, do not live in any particular geometric
space—but many others do. Examples include transportation networks, communication
networks, and power grids. The study of spatial networks has a long history in the
sciences [4]-[6], and has in particular attracted considerable attention from physicists in
recent years [7]-[12].

In this paper we study the spatial layout of man-made distribution or collection
networks, such as oil and gas pipelines, sewage systems, and train or air routes. The
vertices in these networks represent, for instance, households, businesses, or train stations
and the edges represent pipes or tracks. In most cases the network also has a ‘root node’,
a vertex that acts as a source or sink of the commodity distributed—a sewage treatment
plant, for example, or a central train station.

Geography clearly affects the efficiency of these networks. There are various possible
definitions of efficiency [13]-[15]; in this paper we follow an idea put forward by
Stevens [16]. A ‘good’ distribution network, as we will consider it, has two definitive
properties. First, the network should be efficient in the sense that the paths from each
vertex to the root vertex are relatively short. That is, the sum of the lengths of the edges
along the shortest path through the network should be not much longer than the ‘crow
flies’ distance between the same two vertices: if a subway track runs all around the city
before getting you to the central train station, the train is probably not of much use to
you. Second, the sum of the lengths of all edges in the network should be low so that
the network is economical to build and maintain. These two criteria are often at odds
with each other, but, as we show in section 2, real networks nonetheless manage to find
solutions to the distribution problem that come remarkably close to being optimal in both
senses. We suggest possible explanations for this observation in the form of two models
for geographic networks in section 3 that generate networks of comparable efficiency to
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our real-world examples. The models we propose are based on growth processes in which
edges are added one by one to connect new vertices to the network. This contrasts
with the approach taken in [17,12], in which networks are created by globally optimizing
the arrangement of edges joining a given set of vertices. While both growing networks
and globally optimized ones are suitable as models of spatial networks in appropriate
circumstances, our focus in this paper is on the growing case.

2. Efficiency in real networks

We begin our study by looking at the properties of some real-world distribution networks.
We consider four examples as follows.

Our first network is the sewer system of the City of Bellingham, Washington. From
GIS data for the city, we extracted the shapes and positions of the parcels of land (roughly
households) into which the city is divided and the lines along which sewers run. We
constructed a network by assigning one vertex to each parcel whose centroid was less
than 100 m from a sewer. The vertex was placed on the sewer at the point closest to the
corresponding centroid and adjacent vertices along the sewers were connected by edges.
The city’s sewage treatment plant was used as the root vertex, for a total of 23 922 vertices
including the root.

Our next two examples are networks of natural gas pipelines, the first in Western
Australia (WA) and the second in the southeastern part of the US state of Illinois (IL)?.
We assigned one vertex to each city, town, or power station within 10 km (WA) or 10 000
feet (IL) of a pipeline. The vertex was placed on the pipeline at the point closest to each
such place, and adjacent vertices joined by edges. The root for WA was chosen to be
the shore point of the pipeline leading to the Barrow Island oil fields and for IL to be
the confluence of two major trunk lines near the town of Hammond, IL. The resulting
networks have 226 (WA) and 490 (IL) vertices including the roots.

For our last example, we take the commuter rail system operated by the Massachusetts
Bay Transportation Authority in the city of Boston, MA (figure 1(a)). In this network,
the 125 stations form the vertices and the tracks form the edges. In principle, there are
two components to this network, one connected to Boston’s North Station and the other
to South Station, with no connection between the two. Since these two stations are only
about one mile apart, however, we have, to simplify the calculations, added an extra edge
between the North and South Stations, joining the two halves of the network into a single
component. The root node was placed halfway between the two stations for a total of 126
vertices in all.

We wish to quantify the efficiency of these networks in terms of path lengths and
combined edge length, as described above. To do this, we compare our measurements of
the networks to two theoretical models that are each optimal by one of these two criteria.
If one is interested solely in short, efficient paths to the root vertex then the optimal
network is the ‘star graph’, in which every vertex is connected directly to the root by a
single straight edge (see figure 1(b)). Conversely, if one is interested solely in minimizing
total edge length, then the optimal network is the minimum spanning tree (MST) (see
figure 1(c)). (Given a set of n vertices at specified points on a flat plane, the MST is the

3 South of 41.00°N and east of 89.85°W. We consider only the largest component within this region.
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(a) (©) ()

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Table 1. Number of vertices n, route factor ¢, and total edge length for each of
the networks described in the text, along with the equivalent results for the star
graphs and minimum spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted from the table.)

Route factor Edge length (km)
Network n Actual MST Actual MST Star
Sewer system 23922 1.59 2.93 498 421 102998
Gas (WA) 226 1.13 1.82 5578 4374 245034
Gas (IL) 490 1.48 242 6547 4009 59595
Rail 126 1.14 1.61 559 499 3272

set of n — 1 edges joining them such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized?.)

To make the comparison with the star graph, we consider the distance from each non-
root vertex to the root, first along the edges of the network and second along a simple
Euclidean straight line, and calculate the mean ratio of these two distances over all such
vertices. Following [18], we refer to this quantity as the network’s route factor, and denote
it ¢:

—

n—

1 l;

n— 1 dy

=]

, (1)

q:

S8

where [;y is the distance along the edges of the network from vertex i to the root (which
has label 0), and d; is the direct Euclidean distance. If there is more than one path
through the network to the root, we take the shortest one. Thus, for example, ¢ = 2
would imply that on average the shortest path from a vertex to the root through the
network is twice as long as a direct straight-line connection. The smallest possible value
of the route factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in table 1. As we can see, the
networks are remarkably efficient in this sense, with route factors quite close to 1. Values

4 If we are not restricted to the specified vertex set but are allowed to add vertices freely, then the optimal solution
is the Steiner tree; in practice we find that there is little difference between results for minimum spanning and
Steiner trees in the present context.
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range from ¢ = 1.13 for the Western Australian gas pipelines to ¢ = 1.59 for the sewer
system.

We also show in table 1 the total edge lengths for each of our networks, along with the
edge lengths for the MST on the same set of vertices and, as the table shows, we again find
that our real-world networks are competitive with the optimal model, the combined edge
lengths of the real networks ranging from 1.12 to 1.63 times those of the corresponding
MSTs.

But now consider the remaining two columns in the table, which give the route factors
for the MSTs and the total edge lengths for the star graphs. As the table shows, these
figures are for all networks much poorer than the optimal case and, more importantly,
much poorer than the real-world networks too. Thus, although the MST is optimal in
terms of total edge length, it is very poor in terms of route factor and the reverse is true
for the star graph®. Neither of these model networks would be a good general solution
to the problem of building an efficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably good compromise between
the two extremes, possessing simultaneously the benefits of both the star graph and the
minimum spanning tree, but without the drawbacks. In the remainder of the paper we
consider mechanisms by which this might occur.

3. Network models with low route factors

The networks we are dealing with are not, by and large, designed from the outset for
global optimality (or near-optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the root, as the population they
serve swells and infrastructure is extended and improved. To explore this process we
consider a situation in which the positions of vertices (houses, towns, etc) are given and
we are to build a network connecting them. For simplicity we will assume that the
vertices are randomly distributed in two-dimensional space with unit mean density, with
one vertex designated as the root of the network. A cluster connected to the root is built
up by repeatedly adding an edge that joins one unconnected vertex i to another j that is
part of the cluster. The question is how these edges are to be chosen. Our proposal is to
use a simple ‘greedy’ optimization criterion [19] that always adds the current best-choice
edge.
We specify a weight for each edge (i, ) thus:
wl-j = dij + &M, (2)
di

where « is a non-negative independent parameter. As before, d;; is the direct Euclidean
distance between vertices ¢ and j and [;; the distance along the shortest path in the
network. The first term in (2) is the length of the prospective edge, which represents the
cost of building the corresponding pipe or track, and the second term is the contribution
to the route factor from vertex i. At every step we now add to the network the edge with

5 It is crucial to remember that route factors are measured relative to the value ¢ = 1, not ¢ = 0, since by
definition no network has ¢ less than 1. Thus, while upon initial inspection it may appear that the values 1.13 for
our gas pipeline and 1.82 for the corresponding MST are of the same order of magnitude, in fact, when compared
with the fundamental value of 1 the former is very significantly better than the latter. Similar observations apply
to the other networks as well.
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Figure 2. Simulation results for the route factor ¢ and average edge length [ as
a function of « for our first model with n = 10000 vertices. The length scale is
normalized by setting the mean density equal to one. Inset: an example model
network with o = 12.0. Colours indicate the order in which edges were added to
the network.

the global minimum value of w;;. The single parameter « controls the extent to which
our choice of edge depends on the route factor. For a = 0 we always add the vertex
that is closest to the connected cluster. This limit produces a graph akin to a grown
version of the minimum spanning tree, and we find it to give very poor route factors. As
« is increased from zero, however, the model becomes more and more biased in favour of
making connections that give good values for the route factor.

Figure 2 shows results from simulations of this model. We plot the route factor ¢
of the entire network and the average length of an edge [ against o. As « is increased
the route factor does indeed decrease in this model, just as we expect. Furthermore, it
initially decreases very sharply with o, while at the same time [, which is a measure of the
cost of building the network, increases only slowly. Thus, it appears to be possible to grow
networks that cost only a little more than the optimal (o = 0) network, but which have
far less circuitous routes. This finding fits well with our observations of real distribution
networks.

The inset to figure 2 shows an example network grown using this model. The network
has a dendritic appearance, with relatively straight trunk lines and short branches, and
bears a qualitative resemblance to diffusion-limited aggregation clusters [20] or dielectric
breakdown patterns [21], which have also been used as models of urban growth [22]
although they are based on entirely different mechanisms.

In some respects, however, this model is quite unrealistic. In particular, many vertices
are never joined to the network, even ones lying quite close to the root, because to do
so would simply be too costly in terms of the route factor. (This is the reason for the
dendritic shape.) This is not the way the real world works: one does not decide not to
provide a sewer service to some parts of a city just because there is no convenient straight

doi:10.1088/1742-5468,/2006,/01 /P01015 6
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Figure 3. Route factor ¢ and average edge length [ as a function of 8 for our
second model with n = 10000 vertices. Inset: an example model network with

B=0.4.

line for the sewer to take. Instead, connections seem to be made to those vertices that
can be connected to the root by a reasonably short path, regardless of whether that path
is straight. In the case of trains, for instance, people will use a train service—and thereby
justify its construction—if their train journey is short in absolute terms, and are less likely
to take a longer journey even if the longer one is along a straighter line. As we now show,
we can, by incorporating these considerations, produce a more realistic model that still
generates highly efficient networks.

Let us modify equation (2) to give preference to short paths regardless of shape. To
do this, we write the weight of a new edge (7, j) as simply

W, = dij + Blyo. (3)

(A model with a similar weight function was studied previously by Fabrikant et al [23],
but gives quite different results from ours because vertices were added to the network at
the same time as the edges that connect them, where in our case all vertices are present
from the outset. Our model and the model of Fabrikant et al can be thought of as two
limiting cases, in which the positions of the vertices are initially entirely known or entirely
unknown, respectively. Of course, the real world lies somewhere between these limits but,
as is often the case, studies of the extremes can nonetheless be illuminating.) Note that
there is now no explicit term that guarantees low route factors. Even so, the model self-
organizes to a state whose route factor is small. Figure 3 shows results from simulations
of this second model. As the plot shows, the results are qualitatively quite similar to our
first model: the high value of ¢ seen for 3 = 0 drops off quickly as [ is increased, while
the mean edge length increases only slowly. Thus, we can again choose a value for
that gives behaviour comparable with our real-world networks, having simultaneously low
route factor and low total cost of building the network. Values of ¢ in the range 1.1-1.6
observed in the real-world networks are easily achieved.

doi:10.1088/1742-5468,/2006,/01 /P01015 7
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When we look at the shape of the network itself however (see the inset of figure 3), we
get quite a different impression. This model produces a symmetric network that fills space
out to some approximately constant radius from the root, not unlike the clusters produced
by the well known Eden growth model [24]. The second term in equation (3) makes it
economically disadvantageous to build connections to outlying areas before closer areas
have been connected. Thus, all vertices within a given distance of the root are served by
the network, without gaps, which is a more realistic situation than the dendritic network
of figure 2.

And this in fact may be the secret of how low route factors are achieved in reality.
Our second model—unlike our first—does not explicitly aim to optimize the route factor.
But it does a creditable job nonetheless, precisely because it fills space radially. The main
trunk lines in the network are forced to be approximately straight, simply because the
space to either side of them has already been filled and there is nowhere else to go but
outwards.

Readers familiar with urban geography may argue that real networks, and the towns
they serve, are dendritic in form. And this is true, but it is primarily a consequence of
other factors, such as ribbon development along highways. In other words, the initial
distribution of vertices in real networks is usually non-uniform, unlike our model. It is
interesting, therefore, to see what happens if we apply our model to a realistic scatter of
points, and in figure 1(d) we have done this for the stations of the Boston rail system.
The figure shows the network generated by our second model with § = 0.4 acting on the
real-world positions of the stations. The result is, with only a few exceptions, identical to
the true rail network: only 13 out of the 125 edges present in the real network are absent
in the model. Moreover, both the route factor of 1.11 and total edge length of 511 km for
the model network are close to the values of 1.14 and 559 km for the real network. This
is a nontrivial result: our first model, for example, does not reproduce the true network
nearly so well.

4. Conclusion

To summarize, in this paper we have studied spatial distribution or collection networks
such as pipelines and sewers, focusing particularly on their cost in terms of total edge
length and their efficiency in terms of the network distance between vertices, as measured
by the so-called route factor. While these two quantities are, to some extent, at odds with
each other, the first normally being decreased only at the expense of an increase in the
second, our empirical observations indicate that real-world networks find good compromise
solutions giving nearly optimal values of both. We have presented two models of spatial
networks based on greedy optimization strategies that reproduce this behaviour well,
showing how networks possessing simultaneously good route factors and low total edge
length can be generated by plausible growth mechanisms.

The results presented represent only a fraction of the possibilities in this area.
Numerous other real-world networks fall into the class studied here, including utility,
transportation, and shipping networks, as well as some biological networks, such as the
circulatory system [25], fungal mycels [26], and others, and we hope that researchers will
feel encouraged to investigate these interesting systems.

doi:10.1088/1742-5468,/2006,/01 /P01015 8


http://dx.doi.org/10.1088/1742-5468/2006/01/P01015

Shape and efficiency in spatial distribution networks

Acknowledgments

The authors thank Jonathan Goodwin and Sean Doherty for the pipeline network data
and the staff of the University of Michigan’s Numeric and Spatial Data Services for their
help. This work was funded in part by the National Science Foundation under grant
number DMS-0234188 and by the James S McDonnell Foundation.

References

(1]
2]
3]
[4]

Albert R and Barabési A-L, 2002 Rev. Mod. Phys. T4 47

Dorogovtsev S N and Mendes J F F, 2002 Adv. Phys. 51 1079

Newman M E J, 2003 SIAM Rev. 45 167

Murray C D, 1926 Proc. Nat. Acad. Sci. 12 207

Horton R E; 1945 Bull. Geol. Soc. Am. 56 275

Edelstein-Keshet L and Ermentrout B, 1989 SIAM J. Appl. Math. 49 1136

Yook S H, Jeong H and Barabdsi A-L, 2001 Proc. Nat. Acad. Sci. 99 13382

Gorman S P and Kulkarni R, 2004 Environment and Planning B 31 273

Guimera R, Mossa S, Turtschi A and Amaral L. A N, 2005 Proc. Nat. Acad. Sci. 102 7794

Csanyi G and Szendréi B, 2004 Phys. Rev. E 70 016122

Kaiser M and Hilgetag C C, 2004 Phys. Rev. E 69 036103

Gastner M T and Newman M E J, 2006 Eur. Phys. J. B at press

Leopold L B, 1971 J. Theor. Biol. 31 339

McMahon T' A and Kronauer R E, 1976 J. Theor. Biol. 59 443

Zamir M, 1976 J. Theor. Biol. 62 227

Stevens P S, 1974 Patterns in Nature (Boston, MA: Little, Brown and Company)

Mathias N and Gopal V, 2001 Phys. Rev. E 63 021117

Black W R, 2003 Transportation: A Geographical Analysis (New York: Guilford Press)

Cormen T H, Leiserson C E, Rivest R L and Stein C, 2001 Introduction to Algorithms 2nd edn
(Cambridge, MA: MIT Press)

Witten T A and Sander L M, 1981 Phys. Rev. Lett. 47 1400

Niemeyer L, Pietronero L and Wiesmann H J, 1984 Phys. Rev. Lett. 52 1033

Batty M, Longley P A and Fotheringham A S, 1989 Environment and Planning A 21 1447

Fabrikant A, Koutsoupias E and Papadimitriou C H, 2002 Proc. Int. Colloquium on Automata, Languages
and Programming (Springer Lecture Notes in Computer Science vol 2380) ed P Widmayer, F T Ruiz,
R M Bueno, M Hennessy, S Eidenbenz and R Conejo (Berlin: Springer) pp 1102

Eden M, 1961 Proc. 4th Berkeley Symp. on Mathematical Statistics and Probabilities
ed F Neyman (Berkeley, CA: University of California Press) pp 223-39

Nekka F, Kyriacos S, Kerrigan C and Cartilier L, 1996 Bull. Math. Biol. 58 409

Moore D, McNulty L J and Meskauskas A, 2005 Branching Morphogenesis ed J Davies (Georgetown:
Landes Bioscience/Eurekah.com)

doi:10.1088/1742-5468,/2006,/01 /P01015 9


http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1080/00018730110112519
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/0149068
http://dx.doi.org/10.1073/pnas.172501399
http://dx.doi.org/10.1068/b29118
http://dx.doi.org/10.1073/pnas.0407994102
http://dx.doi.org/10.1103/PhysRevE.70.016122
http://dx.doi.org/10.1103/PhysRevE.69.036103
http://dx.doi.org/10.1016/0022-5193(71)90192-5
http://dx.doi.org/10.1016/0022-5193(76)90182-X
http://dx.doi.org/10.1016/0022-5193(76)90058-8
http://dx.doi.org/10.1103/PhysRevE.63.021117
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevLett.52.1033
http://dx.doi.org/10.1016/0092-8240(95)00343-6
http://dx.doi.org/10.1088/1742-5468/2006/01/P01015

	1. Introduction
	2. Efficiency in real networks
	3. Network models with low route factors
	4. Conclusion
	Acknowledgments
	References

