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Abstract.  The voter model is a simple agent-based model to mimic opinion 
dynamics in social networks: a randomly chosen agent adopts the opinion 
of a randomly chosen neighbour. This process is repeated until a consensus 
emerges. Although the basic voter model is theoretically intriguing, it misses 
an important feature of real opinion dynamics: it does not distinguish between 
an agent’s publicly expressed opinion and her inner conviction. A person may 
not feel comfortable declaring her conviction if her social circle appears to hold 
an opposing view. Here we introduce the Concealed Voter Model where we add 
a second, concealed layer of opinions to the public layer. If an agent’s public 
and concealed opinions disagree, she can reconcile them by either publicly 
disclosing her previously secret point of view or by accepting her public opinion 
as inner conviction. We study a complete graph of agents who can choose from 
two opinions. We define a martingale M that determines the probability of all 
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agents eventually agreeing on a particular opinion. By analyzing the evolution 
of M in the limit of a large number of agents, we derive the leading-order terms 
for the mean and standard deviation of the consensus time (i.e. the time needed 
until all opinions are identical). We thereby give a precise prediction by how 
much concealed opinions slow down a consensus.

Keywords: stochastic processes, agent-based models, exact results, socio-
economic networks
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1.  Introduction

The voter model, introduced in the 1970s [1, 2], has became a paradigmatic model 
for the theoretical study of opinion dynamics [3, 4]. It describes the emergence of an 
ordered state (e.g. a consensus) through the local interactions of individual agents (e.g. 
voters). This phenomenon occurs in various contexts. Therefore, the original voter 
model and its extended versions have been broadly applied not only in social and 
political sciences [4, 5], but also in chemistry (e.g. in the study of catalytic reactions 
[6]) and biology (e.g. for modelling ecological competition [7–9] and prey-predator 
interaction [10]).

Most voter models share the features that

	 (i)	� each agent is in one state (e.g. has one particular opinion) out of two alternatives 
and

https://doi.org/10.1088/1742-5468/aac14a
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	 (ii)	� the state can only be changed through pairwise interactions between agents.

(For exceptions from rules (i) and (ii), see [11] and [12], respectively.) In each interac-
tion, a focal agent is selected at random together with a randomly chosen adjacent 
agent. The graph that describes the adjacency can be complete, regular (e.g. a square 
lattice) or more complex (see examples in [13] and [14]). The focal agent can adopt 
or reject the opinion of the adjacent agent. In the original version of the voter model, 
which we call the basic voter model (BVM), the rule of interaction is simple: the focal 
agent must adopt the neighbour’s opinion.

The BVM on a finite, strongly connected graph (i.e. a graph in which there is a 
directed path between every pair of agents) inevitably reaches a global consensus [15] 
(i.e. an absorbing state in which every agent holds the same opinion). Various versions 
of the model have applied more complex rules [4], some of which may not guarantee 
that all agents ultimately share the same opinion. However, in this paper we only 
consider models that must end in a consensus. In this context, an important question 
is how long it takes until all agents agree. The consensus time (also called exit time, 
hitting time or first-passage time) depends on the rules of interaction and graph struc-
ture [16].

In this article, we introduce a new kind of model, the concealed voter model (CVM), 
which diers from the BVM by distinguishing between an agent’s publicly expressed 
opinion and her inner conviction about the particular subject. For this reason, we 
add a second, concealed layer of opinions to the public layer (figure 1). The duality 
between inner conviction and publicly expressed opinion is an important phenomenon 
in every society (see examples in [17]). To our knowledge, the first theoretical model 
that explicitly considered this duality was the ‘partisan’ voter model [18, 19]. Every 
agent in that model is a ‘partisan’ with a fixed and innate preference for one of the two 
opinions, which influences the agent’s publicly expressed opinion. Thus, the partisan 
model distinguishes between two layers, but the interaction between the layers is only 
unidirectional: the internal opinion influences the external one, but the partisan voter 
model does not contain any feedback mechanism from the external to the internal 
opinion. The main novelty in the CVM is that it permits a bidirectional interaction 
between both layers.

We compare the mean and the standard deviation of the consensus time in the 
BVM and CVM. Thus, we investigate whether the existence of concealed opinions 
increases the coexistence time of alternative opinions in a group of people and, if yes, 
to what extent. In real societies, concealed opinions are ubiquitous on many kinds of 
issues [17], for example on political votes, debated social norms or consumption habits. 
Understanding the composition of opinions in the hidden layer, and how it influences the 
public, is important for making reliable predictions about collective opinion formation.

2. The basic and the concealed voter model

Let N denote the number of agents in the system. In the BVM, the state of each 
agent α at time t is defined as her publicly expressed opinion ωext(α, t). The subscript 
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‘ext’ emphasizes that this is an external opinion in the sense that any adjacent agent 
can learn that α’s opinion is ωext(α, t). In our model, t is continuous and opinions are 
updated asynchronously (see [20] for a discussion of dierences between voter models 
with synchronous and asynchronous updates). The opinion is binary. We denote the 
options as red (R) or blue (B). The agent updates her opinion by selecting one of the 
adjacent agents, say β, randomly and copying β’s opinion ωext(β, t). The time intervals 
between two consecutive copying events by agent α are exponentially distributed with 
a rate c. All time intervals are independent of each other so that the times between two 
successive copying events in a system composed of N agents is exponentially distributed 
with a rate c·N.

In the CVM, the state of each agent is given by a pair of states (ωext(α, t),ωint(α, t)), 
where ωext is the external and ωint the internal opinion (figure 1). We denote the two 
possible external opinions with a capital letter R or B, whereas the lower-case letter 
r or b stands for her internal opinion. The agents’ four possible states are denoted 
as Rr, Rb, Br and Bb. The rules of updating in the external layer are the same as in 
the BVM. An additional process, that is specific to the CVM, is introspection. When 
ωext(α, t) �= ωint(α, t) (i.e. there is a discordance between the external and the internal 
opinion), the agent can relax it by either of two processes: externalization, whereby the 
formerly concealed internal state becomes public; or internalization, when the publicly 
voiced opinion becomes an internal conviction. Altogether, there are three competing 

Figure 1.  Example for the CVM in a small, complete network, with N  =  6. Each 
agent is represented by two nodes, one in the external and one in the internal 
layer. The state of the agent marked by a yellow background is Rb; note that 
we use upper-case letters for the external and lower-case letters for the internal 
opinions. The following elementary events can happen to this agent: copying the 
external opinion of a randomly selected agent (solid gray arrow); externalization 
(solid black arrow); or internalization (dotted black arrow). The corresponding 
rates are c, e and i. The loops in the external layer indicate that copying the 
agent’s own opinion is also among the options; in that case, the agent keeps the 
original opinion.

https://doi.org/10.1088/1742-5468/aac14a
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processes in the system: copying, externalization, and internalization. The time inter-
vals between two consecutive events of each kind are independent and exponentially 
distributed with rates c·N, e·N  and i·N, respectively, in the group of N agents. Copying 
other agents’ opinions promotes consensus within the external layer whereas external-
ization and internalization advance consensus between the two layers.

In this article, we study the global outcome of these processes for large N in com-
plete graphs. Because complete graphs are strongly connected, the agents must reach 
a consensus if N is finite. We include the reflexive relation (i.e. there is a loop from an 
agent to herself) for mathematical convenience. For large N, the dierence between the 
dynamics with and without the self-loop is negligible. In the BVM, we describe the 
state of the system at any given time t by the fraction ρR(t) of agents whose opinion 
is red in the only (i.e. external) layer. In the CVM, we describe the state by (i) ρR in 
the external layer, (ii) the fraction ρr of red opinions in the internal layer, and (iii) the 
fraction ρRr of agents whose opinion is red in both layers. We study the time evolution 
of these observables and examine the consensus time (i.e. the first time when only a 
single opinion is present in both layers).

In section 3, we review some published results about the BVM concerning the main 
statistical properties of the consensus time. In order to investigate the same charac-
teristics in the CVM, we first introduce an intermediate model in section 4 (the two-
layered voter model), in which we also assume the existence of two connected layers. 
However, unlike in the CVM, the event ωext(α, t) = R is independent of ωint(α, t) = r 
so that the equations are easier to solve. Finally, we show in section 5 that the CVM 
equations can be solved similarly.

3. The basic voter model (BVM) on the complete graph

The mean consensus time of the BVM on the complete graph has been the subject of 
earlier publications (e.g. [13, 21]). Here we briefly review these results and also state the 
equation for higher moments of the consensus time distribution. We include this review 
because the BVM acts as a base case for comparison with the CVM and motivates the 
analytic techniques we apply below.

We describe the state S of the system by the fraction ρR ∈ {0, 1
N
, . . . , N−1

N
, 1} of 

agents whose opinion is red. The probability that the next copy increases ρR by 1
N

 

equals the product of the probability (1− ρR) that the copying agent’s opinion is blue 
and the probability ρR that the copied agent holds the red opinion. Because copying 

events happen with rate cN, the transition rate from ρR to ρR + 1
N

 is

QBVM

(
ρR, ρR +

1

N

)
= cNρR(1− ρR).� (1)

Similarly, the rate with which ρR decreases to ρR − 1
N
 is the product of the copy rate 

cN, the probability ρR that the copying agent is red and the probability (1− ρR) that 
the copied opinion is blue,

QBVM

(
ρR, ρR − 1

N

)
= cNρR(1− ρR).� (2)

https://doi.org/10.1088/1742-5468/aac14a
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A comparison between (1) and (2) reveals that both transition rates are in fact equal.

The probability that in one copy we increase or decrease ρR by more than 1
N

 is 
zero. The diagonal element Q(ρR, ρR) of a transition rate matrix Q is conventionally 

defined as −
∑

x�=ρR
Q(ρR, x). Therefore, the only nonzero matrix elements in the row 

corresponding to state ρR are QBVM

(
ρR, ρR ± 1

N

)
 and

QBVM(ρR, ρR) = −2cNρR(1− ρR).� (3)
The relatively simple structure of QBVM allows us to verify that the state S(t) at 

time t is a martingale,

E[S(t+ u) | S(t)] = S(t),� (4)
where E[. . . | . . .] denotes the conditional expectation value and u is an arbitrary non-
negative time. Equation (4) follows directly from the fact that 

∑
x xQBVM(ρR, x) = 0 

for all ρR. If we start a series of Monte Carlo simulations always from a fixed initial 
fraction S(0)  =  s0 of red agents, the martingale property (4) manifests itself as follows. 
As we increase the number of simulations, the sample mean of S(t)—averaged over 
dierent simulations, but at a fixed t—converges to s0 although each individual run is 
likely to dier from s0 [22].

We denote the consensus time by Tcons. For every realization, we can tell whether 
Tcons = t is true without having to know any of the states at times  >t. Therefore, in 
the parlance of stochastic processes, Tcons is a ‘stopping time’. Because we also know 
that S is a martingale with time-independent lower and upper bounds 0 and 1, we must 
have E[S(Tcons)] = E[S(0)] (see [23]). Moreover, the only two possible states at Tcons are 
either S(Tcons) = 1 (i.e. a red consensus) or S(Tcons) = 0 (i.e. a blue consensus) so that 
the probability of a red consensus is given by the expected initial fraction E[S(0)] of 
red agents. In the special case where all simulations start with S(0)  =  s0, we reach a red 
consensus with probability s0.

How long does it take on average to reach a consensus from s0? If we denote the 
expected consensus time by

µ
(1)
BVM(s0) = E[Tcons | S(0) = s0],

where the superscript ‘(1)’ indicates that the left-hand side is the first moment of the 

conditional consensus time distribution, then µ
(1)
BVM must satisfy [23]

∑
s0

QBVM(ρR, s0)µ
(1)
BVM(s0) = −1 for all ρR =

1

N
, . . . ,

N − 1

N
,

µ
(1)
BVM(0) = µ

(1)
BVM(1) = 0.

�

(5)

Inserting (1)–(3) into (5), we obtain

cNρR(1− ρR)

[
µ
(1)
BVM

(
ρR − 1

N

)
− 2µ

(1)
BVM(ρR) + µ

(1)
BVM

(
ρR +

1

N

)]
= −1.

� (6)
We approximate µ

(1)
BVM by a smooth function and substitute its Taylor expansion 

into (6). After dropping terms O(N−3), which are negligible if N � 1, we obtain the 
dierential equation

https://doi.org/10.1088/1742-5468/aac14a
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d2

dρ2R
µ
(1)
BVM(ρR) = − N

cρR(1− ρR)
.� (7)

The solution is [13, 21]

µ
(1)
BVM(ρR) = −N

c
· [ρR ln ρR + (1− ρR) ln(1− ρR)].� (8)

We can generalize this approach to higher moments of the consensus time. Let 

µ
(n)
BVM(s0) denote the nth moment of the consensus time conditioned on the initial state 

s0,

µ
(n)
BVM(s0) = E [T n

cons | S(0) = s0] .

With the method described in section 1.6.2.2 of [21], one can obtain the following gen-
eralization of (7),

d2

dρ2R
µ
(n)
BVM(ρR) = −nN

c

µ
(n−1)
BVM (ρR)

ρR(1− ρR)
.� (9)

For the second moment, in particular, we find the following result that we have not 
seen explicitly stated in the previous literature,

µ
(2)
BVM(ρR)

=
2N2

c2

[
ρR ln ρR + (1− ρR) ln(1− ρR)− ρRLi2(ρR)− (1− ρR)Li2(1− ρR) +

π2

6

]
,

�
(10)

where Li2 is the dilogarithm.

Our objective is to compare the mean µ
(1)
BVM(s0) and the standard deviation

σBVM(s0) =

√
µ
(2)
BVM(s0)−

[
µ
(1)
BVM(s0)

]2
� (11)

of the BVM consensus time with those of the CVM. We will derive that, for N � 1, 
the CVM’s mean and standard deviation dier by a factor that depends on the rates 
of copying, externalization and internalization. We will give the explicit equation (31) 
for this factor below.

4. An intermediate, two-layered voter model (TLVM)

4.1. Motivating and defining the TLVM

The CVM is more complicated than the BVM because we need more than one variable 
to describe its state. The agents can have four possible combinations of external and 
internal opinions (Rr, Rb, Br and Bb). Because the sum of agents in these four states is 
constrained by the total number N of all agents, the state space in the CVM is three-
dimensional. We can, for example, choose the following set of variables to uniquely 
characterize the current state,

https://doi.org/10.1088/1742-5468/aac14a
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	•	 �ρR: fraction of agents whose external opinion is red (i.e. Rr and Rb agents),

	•	 �ρr: fraction of agents whose internal opinion is red (i.e. Rr and Br agents),

	•	 �ρRr: fraction of Rr agents.

In the CVM, the events ωext(α, t) = R (i.e. agent α’s external opinion at time t is 
red) and ωint(α, t) = r (i.e. her internal opinion is red) generally depend on each other. 
That is, P [ωext(α, t) = R,ωint(α, t) = r] = ρRr(t) �= ρR(t)ρr(t). As we will show below, 
we can calculate the leading-order term of the CVM consensus time for N � 1, but 
the inequality ρRr(t) �= ρR(t)ρr(t) complicates the solution. For this reason, we will 
first solve a simplified model where we ignore the dependence between the external 
and internal layer, i.e. we set ρRr(t) = ρR(t)ρr(t). We include the simpler model in this 
article because it demonstrates, with fewer intermediate steps, the analytic techniques 
that we will apply later to the CVM. Although the model does not yet fully capture 
the CVM dynamics, we will still be able to transfer some of the results directly to the 
CVM.

As in the CVM, we still distinguish between an external and an internal layer of 
opinions and, therefore, call this model the Two-Layered Voter Model (TLVM). We 
keep two of the CVM’s features.

	•	 �Each agent copies the external opinion of a random agent with rate c.
	•	 �There is no direct opinion exchange in the internal layer.

We can impose the condition ρRr(t) = ρR(t)ρr(t) by introducing links between all N2 
pairs formed by one external and one internal opinion.

	•	 �With rate e
N

, every pair externalizes (i.e. the internal opinion becomes the external 
opinion).

	•	 �With rate i
N

, each pair internalizes.

We divide e and i by N so that the mean time between externalization and inter-
nalization events is equal in the TLVM and CVM. We list all transitions in the TLVM 
together with their rates in table 1.

Similar to the BVM, the TLVM possesses a martingale, albeit a slightly more com-
plex one. We define the function

m(ρR, ρr) =
iρR + eρr
e+ i

,� (12)

which maps the two-dimensional input (ρR, ρr) onto a real number in [0, 1]. We can view 
m as the relative proportion of the red opinion that is present in the combination of the 

external and internal layer, prorated by the weights i
e+i

 and e
e+i

, respectively. Let SR(t) 
be the random variable that equals the fraction of R agents4. Similarly, Sr(t) equals the 
fraction of r agents. We show in lemma A.1 in the appendix that m[SR(t),Sr(t)] is a 
martingale. In the appendix, we also prove a corollary of this lemma (corollary A.2): 
if the initial state is SR(0) = ρR and Sr(0) = ρr, then the probability of reaching a red 

4 SR should not be confused with ρR. SR is the function that maps a stochastic configuration of opinions to the 
fraction ρR of red external opinions. Thus, SR is a random variable whereas ρR is a number between 0 and 1.

https://doi.org/10.1088/1742-5468/aac14a
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consensus is m(ρR, ρr). As we will see shortly, m[SR(t),Sr(t)] is a convenient summary 
statistic to derive the time needed to reach a consensus.

4.2. The consensus time in the TLVM

Suppose we are in the state SR(t) = ρR, Sr(t) = ρr at time t. What can we infer about 
the state at a later time t  +  u? In appendix B, we prove the following property (theo-
rem B.1): after a transient of duration O[(e  +  i)−1], SR(t  +  u) approximately equals 
Sr(t  +  u). If e and i are independent of N, the relative error we commit by the approx
imation SR ≈ Sr is negligible if N � 1 because the consensus time turns out to be O(N) 
(see equation (13)). In other words, we can separate two time scales. On a fast time 
scale, the expected value of SR − Sr quickly decays to zero. On a slow time scale, the 
system diuses along the line ρR = ρr towards one of the absorbing states. In figure 2, 
we show a typical run of the TLVM that confirms this conjecture. We calculated the 
data shown in figure 2 and all other numerical results in this article with the Gillespie 
algorithm, an exact implementation of the stochastic dynamics [24].

Because the TLVM spends most of the time in states with SR ≈ Sr, we can 
approximately describe the dynamics in terms of the one-dimensional random variable 
M = m[SR(t),Sr(t)], where m is the function defined in (12). In this simplified picture, 

we use the symbol Q̃TLVM for the transition rate matrix. The nonzero elements of 
Q̃TLVM are

Q̃TLVM

(
m,m+

i

(e+ i)N

)
= Q̃TLVM

(
m,m− i

(e+ i)N

)
= (c+ e)Nm(1−m),

Q̃TLVM

(
m,m+

e

(e+ i)N

)
= Q̃TLVM

(
m,m− e

(e+ i)N

)
= iNm(1−m),

Q̃TLVM(m,m) = −2(c+ e+ i)Nm(1−m),

which we can derive by substituting (12) into the transition rates in table 1.
In analogy to the BVM, we define the mean consensus time in the TLVM as

µ
(1)
TLVM(m0) = E[Tcons | M(0) = m0].

It must satisfy the equivalent of (5),

Table 1.  Transitions from the state (ρR, ρr) in the TLVM and their rates.

New state  
(x, y) How is the new state reached?

Transition rate matrix  
element QTLVM[(ρR, ρr), (x, y)]

(
ρR + 1

N
, ρr

)
A B agent copies a neighbour with external 
opinion R or a Br pair externalizes.

cNρR(1− ρR) + eN(1− ρR)ρr

(
ρR − 1

N
, ρr

)
An R agent copies a neighbour with external 
opinion B or an Rb pair externalizes.

cNρR(1− ρR) + eNρR(1− ρr)

(
ρR, ρr +

1
N

)
An Rb pair internalizes. iNρR(1− ρr)(

ρR, ρr − 1
N

)
A Br pair internalizes. iN(1− ρR)ρr

(ρR, ρr) Negative sum of all rates above. −2cNρR(1− ρR)+ 
(e+ i)N(2ρRρr − ρR − ρr)
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∑
m0

Q̃TLVM(m,m0)µ
(1)
TLVM(m0) = −1

for all m = iNR+eNr

N(e+i)
 with NR,Nr ∈ {0, 1, . . . ,N} and m /∈ {0, 1}. As in the BVM, we 

Taylor expand µ
(1)
TLVM to second order and obtain the dierential equation

d2

dm2
µ
(1)
TLVM(m) = − (e+ i)2N

i[(c+ e)i+ e2]
· 1

m(1−m)
.

The solution, subject to the boundary conditions µ
(1)
TLVM(0) = µ

(1)
TLVM(1) = 0, is

µ
(1)
TLVM(m) = − (e+ i)2N

i[(c+ e)i+ e2]
· [m lnm+ (1−m) ln(1−m)] .� (13)

The calculation of the higher moments of the consensus time

µ
(n)
TLVM = E [T n

cons | M(0) = m0]

is similar to (10) in the BVM. Induction on n shows that

µ
(n)
TLVM(m) =

(
c(e+ i)2

i[(c+ e)i+ e2]

)n

µ
(n)
BVM(m).

Because m ≈ ρR ≈ ρr, the dynamics of the external and internal opinions both behave 
like BVMs, but with a time that is rescaled by a factor

τTLVM(c, e, i) =
c(e+ i)2

i[(c+ e)i+ e2]
.� (14)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρr

ρR

 0

 500

 1000

 1500

 2000

 2500

t

Figure 2.  An example trajectory for the TLVM with N  =  200, c  =  1, e  =  0.25 and 
i  =  0.0625. We plot the state of the system after every 10th update. In the initial 
phase (brown dots), the state moves rapidly towards the diagonal line ρR = ρr. 
Afterwards the system stays near the diagonal until it reaches one of the two 
consensus states in the lower left and upper right corners of the square. As N gets 
larger, the state stays closer to the diagonal.
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In particular, the standard deviations of TLVM and BVM are related by

σTLVM(m) = τTLVM(c, e, i)σBVM(m).� (15)
In figure 3, we show, as a numerical confirmation of (13) and (15), the mean and stan-
dard deviation of the TLVM consensus time obtained from Monte Carlo simulations. 
The numerical results are in excellent agreement with the theoretical predictions (i.e. 
the finite size eect at N  =  1000 does not modify the results substantially).

There are four main conclusions from the TLVM that we will be able to transfer to 
the CVM. (1) Although the state space is two-dimensional, the system spends most of 
the time near the one-dimensional manifold ρR = ρr. (2) We can express the position 
along this manifold in terms of a function m that has the property that m(SR,Sr) is a 
martingale. (3) After expressing the transition rate matrix in terms of m, we can derive 
the moments of the TLVM consensus time distribution. (4) The TLVM moments are 

related to those of the BVM by µ
(n)
TLVM = τTLVM(c, e, i)

nµ
(n)
BVM for a scale factor τTLVM 

that is independent of n. We will encounter similar rules in the CVM.

5. Solving the concealed voter model (CVM)

5.1. Short-term evolution of the states in the CVM

In the CVM, we denote the random variables that map a stochastic configuration 
at time t to the fractions ρR, ρr and ρRr (defined in section 4.1) by SR(t), Sr(t) and 
SRr(t) respectively. Compared to the TLVM, the CVM not only has a three- instead 
of a two-dimensional state space, but the transition rate matrix QCVM also has more 
nonzero elements (listed in table  2). Despite the added complexity, some of the 
TLVM results remain unchanged for the CVM. In particular, the TLVM martingale 
M(t) = m(SR(t),Sr(t)), where m is defined in equation (12), is also a martingale of the 
CVM (see lemma A.1 in the appendix). Moreover, as in the TLVM, m(ρR, ρr) equals 
the probability of reaching a red consensus if the initial condition satisfies SR(0) = ρR 
and Sr(0) = ρr (see corollary A.2). Curiously, m does not depend on ρRr. If we arrange 
the four possible combinations of external and internal opinions Rr, Rb, Br and Bb in a 
2× 2 contingency table, the marginal frequencies ρR and ρr fully determine the prob-
ability that all agents ultimately agree with the red opinion. The joint distribution of 
internal and external opinions, which can be derived with the help of ρRr, does not add 
more information about the probable consensus opinion.

Besides identical martingales, the TLVM and the CVM also have equations (B.1)–
(B.4) in common (see theorem B.1 in the appendix). We can deduce from (B.1)–(B.4) 
that, after a transient of duration O[(e  +  i)−1], the state (SR,Sr,SRr) of the CVM 
satisfies SR ≈ Sr ≈ m(SR,Sr). If e and i are independent of N and N � 1, the transient 
is negligible compared to the consensus time so that we can approximate the dynamics 
of the CVM with a simplified two-dimensional state space. Upon setting ρR = ρr = m, 
the matrix elements in table 2 become

Q̃CVM

[
(m, ρRr),

(
m+

i

N(e+ i)
, ρRr +

1

N

)]
= cNm(m− ρRr) + eN(m− ρRr),

�

(16)
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Q̃CVM

[
(m, ρRr),

(
m+

e

N(e+ i)
, ρRr +

1

N

)]
= iN(m− ρRr),� (17)

Q̃CVM

[
(m, ρRr),

(
m− i

N(e+ i)
, ρRr −

1

N

)]
= cNρRr(1−m),� (18)

Q̃CVM

[
(m, ρRr),

(
m+

i

N(e+ i)
, ρRr

)]
= cN(1− 2m+ ρRr)m,� (19)

Q̃CVM

[
(m, ρRr),

(
m− i

N(e+ i)
, ρRr

)]
= cN(m− ρRr)(1−m) + eN(m− ρRr),

� (20)

Q̃CVM

[
(m, ρRr),

(
m− e

N(e+ i)
, ρRr

)]
= iN(m− ρRr),� (21)

Q̃CVM[(m, ρRr), (m, ρRr)] = −2cNm(1−m) + 2(e+ i)N(ρRr −m).� (22)

With this two-dimensional approximation of QCVM, we can deduce the short-term 
evolution of SRr (see theorem B.2 in the appendix): after a transient that lasts no 

longer than O[(c  +  e  +  i)−1], the states in the CVM satisfy ρR ≈ ρr ≈ m and 

ρRr ≈ cm2+(e+i)m
c+e+i

. We show a typical trajectory of a CVM simulation in figure 4 that 

confirms this approximation.

Figure 3.  The consensus time in the TLVM as a function of the initial value of m 

(defined in equation (12)): (a) the mean µ
(1)
TLVM, and (b) the standard deviation σTLVM. 

Triangles and circles indicate numerical results from Monte Carlo simulations for 

two dierent combinations of c, e and i. The symbol colour represents the value 
of ρR, the symbol size the value of ρr. For some values of m, we include results 
from two combinations of ρR and ρr. The symbols are larger than the error bars 
in several cases. The system size for all simulations is N  =  1000. The curves show 
the theoretical predictions from equation (13) in panel (a) and from equation (15) 
in panel (b).
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5.2. The consensus time in the CVM

Figure 4 demonstrates that we can neglect the transient (i.e. the initial approach 
towards the black curve) compared to the consensus time. We can thus approximate 
the CVM dynamics by a one-dimensional model whose transition rate matrix follows 

from setting ρRr =
cm2+(e+i)m

c+e+i
 in (16)–(22),

≈
QCVM

(
m,m+

i

(e+ i)N

)
=

≈
QCVM

(
m,m− i

(e+ i)N

)

= c

(
1 +

e

c+ e+ i

)
Nm(1−m),

�

(23)

≈
QCVM

(
m,m+

e

(e+ i)N

)
=

≈
QCVM

(
m,m− e

(e+ i)N

)
=

ciNm(1−m)

c+ e+ i
,

� (24)
≈
QCVM (m,m) = −2c

(
1 +

e+ i

c+ e+ i

)
Nm(1−m).� (25)

We use a double tilde in the symbol 
≈
Q CVM for the transition rate matrix to express 

that (23)–(25) are approximations of Q̃CVM, which in turn is an approximation of the 
exact CVM transition rate matrix QCVM given by table 2. The relative error that we 
introduce with these approximations is negligible if N � 1.

With the one-dimensional approximation 
≈
Q CVM, the derivation of the mean consen-

sus time is now analogous to that of the TLVM in section 4.2. We call the mean CVM 
consensus time

µ
(1)
CVM(m0) = E[Tcons | M(0) = m0]

Table 2.  Transitions from the state (ρR, ρr, ρRr) in the CVM and their rates.

New state (x, y, z) How is the new state reached?
Transition rate matrix element 
QCVM[(ρR, ρr, ρRr), (x, y, z)]

(
ρR + 1

N
, ρr, ρRr +

1
N

)
A Br agent externalizes or copies a 
neighbour with external opinion R.

cNρR(ρr − ρRr) + eN(ρr − ρRr)

(
ρR, ρr +

1
N
, ρRr +

1
N

)
An Rb agent internalizes. iN(ρR − ρRr)(

ρR − 1
N
, ρr, ρRr − 1

N

)
An Rr agent copies a neighbour with 
external opinion B.

cNρRr(1− ρR)

(
ρR + 1

N
, ρr, ρRr

)
A Bb agent copies a neighbour with 
external opinion R.

cN(1− ρR − ρr + ρRr)ρR

(
ρR − 1

N
, ρr, ρRr

)
An Rb agent externalizes or copies a 
neighbour with external opinion B.

cN(ρR − ρRr)(1− ρR)+ 
eN(ρR − ρRr)(

ρR, ρr − 1
N
, ρRr

)
A Br agent internalizes. iN(ρr − ρRr)

(ρR, ρr, ρRr) Negative sum of all rates above. −2cNρR(1− ρR)+ 
(e+ i)N(2ρRr − ρR − ρr)
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so that
∑
m0

≈
QCVM (m,m0)µ

(1)
CVM(m0) = −1� (26)

if m /∈ {0, 1} and

µ
(1)
CVM(0) = µ

(1)
CVM(1) = 0.� (27)

Upon inserting (23)–(25) into (26) and taking the continuum limit, we obtain the 
dierential equation

d2

dm2
µ
(1)
CVM(m) = −(c+ e+ i)(e+ i)2N

ci[ci+ (e+ i)2]
· 1

m(1−m)
.

The solution, subject to the boundary condition (27), is

µ
(1)
CVM(m) = −(c+ e+ i)(e+ i)2N

ci[(e+ i)2 + ci]
· [m lnm+ (1−m) ln(1−m)].� (28)

Comparing (28) with the BVM mean consensus time in (8), we find that

µ
(1)
CVM(m) =

(c+ e+ i)(e+ i)2

i[(e+ i)2 + ci]
· µ(1)

BVM(m),

which generalizes to the higher moments as

µ
(n)
CVM(m) =

(
(c+ e+ i)(e+ i)2

i[(e+ i)2 + ci]

)n

µ
(n)
BVM(m).� (29)

Figure 4.  An example trajectory for the CVM with N  =  200, c  =  1, e  =  0.25 and 
i  =  0.0625. We plot the state of the system after every 10th update. Similar to the 
TLVM dynamics in figure 2, the system moves in the initial phase (brown dots) 
rapidly towards a one-dimensional curve (black) that connects the two consensus 
states, which in the CVM are ρR = ρr = ρRr = 0 or ρR = ρr = ρRr = 1 at opposite 

ends of the cube. The parametric equations  for the curve are ρR = ρr = m and 

ρRr =
cm2+(e+i)m

c+e+i
 for m ∈ [0, 1]. After the initial drift, the system stays in the vicinity 

of this curve until it reaches one of the consensus states.
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Figure 5.  (a) The mean consensus time µ
(1)
CVM of the CVM and (b) the standard 

deviation σCVM as a function of m. As in figure 3, triangles and circles are Monte 

Carlo results for two dierent combinations of c, e and i. The symbol colour 
specifies ρR, the symbol size ρr. We also include results for dierent ρRr so that 
there are multiple measurements for a given value of m. The symbols are larger 
than the error bars in several cases. The system size for all simulations is N  =  1000. 
The theoretical predictions from equations (28) and (30) are shown as black curves.
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Figure 6.  The factor τCVM by which the mean CVM consensus time µ
(1)
CVM is 

prolonged compared to the BVM. Because τCVM only depends on e
c
 and i

c
 (see 

equation (31)), we use these ratios for the coordinate axes. The delay is especially 
severe when e is large and i is small. In this region, agents tend to be candid 
about their internal opinions towards the public and they maintain their internal 
opinions for a long time. In the limit i → 0 and e → ∞, the CVM is similar to the 
zealot model by Mobilia et al [25], see our discussion in section 6.
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It follows that the standard deviation of the consensus time obeys

σCVM(m) =
(c+ e+ i)(e+ i)2

i[(e+ i)2 + ci]
· σBVM(m),� (30)

where σBVM can be calculated from (10) and (11). Monte Carlo simulations of the CVM 
are in excellent agreement with equations (28) and (30), see figure 5.

Equation (29) has the remarkable consequence that the CVM consensus time distri-
bution diers from that of the BVM only by the prefactor

τCVM(c, e, i) =
(c+ e+ i)(e+ i)2

i[(e+ i)2 + ci]
.� (31)

We plot the function τCVM in figure 6. Interestingly, τCVM(c, e, i) > 1 for all c, e and 
i for the following reason. Because c, e and i are rates and hence positive numbers, we 
must have

0 < c < c+ e and 0 < i2 < (e+ i)2

⇒ 0 < ci2 < (c+ e)(e+ i)2.

Next we add i(e+ i)2 to the last two terms in the inequality,

0 < i[(e+ i)2 + ci] < (c+ e+ i)(e+ i)2.

Hence, the denominator in (31) is positive and smaller than the numerator, proving 
τCVM(c, e, i) > 1. By contrast, the corresponding TLVM scale factor τTLVM, given by 
equation (14), can be larger or smaller than 1.

6. Discussion

Having concealed opinions is ubiquitous on various subjects from politics to personal 
habits. An agent may choose to misrepresent her privately held opinion when it appears 
to be socially unacceptable. For example, the agent may disapprove of the latest fash-
ion trend, but still adopt it just to blend in with her acquaintances. Kuran [17] argues 
that such preference falsification can slow down changes in social norms. The CVM is 
a simple model to investigate whether the existence of concealed opinions indeed pro-
longs the consensus time and, if yes, to what extent.

Our study is related to earlier models on ‘partisan’ voters [18, 19]. Partisans have an 
innate and fixed preference for one of the opinions. In the limit i → 0, the CVM resem-
bles the partisan model: although agents externally accept other opinions, the internal 
layer never changes. Models with ‘zealot’ agents (also called stubborn or inflexible 
agents [25–27]) are even more restrictive. Zealots are agents that never change their 
opinions. In these models, typically only a small number of agents are zealots, but even 
as few as two zealots with opposite opinions are enough to prevent a consensus. In the 
limiting case i → 0 and e → ∞, the CVM corresponds to a zealot model so that the 
consensus time goes to infinity. This explains the high values of τCVM(c, e, i) in the front 
left corner of figure 6.
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The partisan model permits the flow of opinions from the internal to the external 
layer, but only in this direction. In the CVM, the flow is bidirectional (provided that 
i  >  0 and e  >  0) so that agents can hold contrarian opinions for long but not infinite 
times. The longer an agent has been holding an external opinion, the more likely it 
is that she has adopted it as an internal one. Thereby, the CVM takes into account 
Kuran’s remark that social norms can become genuinely accepted simply because they 
have persisted for a long time.

A characteristic feature of the CVM is that, for all externalization and internal-
ization rates, the consensus is on average slower than in the BVM. Masuda et al [18] 
have shown that one way to slow down the convergence to consensus in the BVM is 
the introduction of heterogeneous copying rates. In their model, each agent k has a 
dierent copying rate ck chosen from a heavy-tailed probability distribution. The CVM 
gives an alternative mechanism for the prolongation of the consensus time. It keeps the 
assumption of homogeneity as in the original BVM (i.e. neither c nor e nor i depend on 
the agent). The deceleration in the CVM is instead caused by the requirement to rec-
oncile the two layers with each other. The process that leads to reconciliation is fairly 
complex. Even when the external layer has reached an apparent consensus, the alter-
native opinion may lurk in the internal layer. This model feature in itself prolongs the 
consensus time. However, the main reason for the slower consensus is that the lurking 
opinion can come to the fore by externalization and then spread by copying, returning 
the system to a state of discord in the external layer.

In spite of this complexity, we were able to find some simple relations for a complete 
graph if N � 1. We defined a martingale M that determines the probability that the 
agents eventually agree on one opinion (‘red’) rather than the alternative (‘blue’). By 
analyzing the stochastic dynamics of M, we obtained the leading-order terms for the 
mean and standard deviation of the consensus time. Notably, the consensus times in 
the CVM only dier from the BVM by a factor τCVM(c, e, i) > 1 that is independent of 
N. It would be an interesting task for future research to study how dierent network 
topologies (e.g. Erdős–Rényi graphs or spatial lattices) or heterogeneity in the rates c, 
e, and i change the consensus time in the CVM.
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Appendix A. Derivation of the probability of a red consensus

We want to calculate the probability that all agents finally agree on the red opinion. 
The crucial step is to find a suitable martingale.
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Lemma A.1.  The random variable M(t) = iSR+eSr

e+i
 is a martingale of both the TLVM 

and CVM. That is, M satisfies

E[M(t+ u) | S(t)] = M(t)� (A.1)

for any u � 0, where S(t) is the state at time t,

S(t) =

{
[SR(t),Sr(t)] for the TLVM,

[SR(t),Sr(t),SRr(t)] for the CVM.� (A.2)

Proof.  Let Q be the transition rate matrix QTLVM or QCVM, respectively. Because S 
is a Markov chain with transition rate matrix Q, we must have

P [S(t+ u) = x | S(t) = s] = [exp(uQ)]s,x,� (A.3)
where the right-hand side is the (s, x)th element in the matrix exp(uQ). Hence,

E[M(t+ u)−M(t) | S(t) = s] =
∑
x

[exp(uQ)− 1]s,x m(x),
� (A.4)

where 1 is the identity matrix and m is defined by (12). Next we take the time deriva-
tive of (A.4),

d

du
E[M(t+ u)−M(t) | S(t) = s] =

∑
x

[exp(uQ)Q]s,xm(x)

=
∑
y

[exp(uQ)]s,y
∑
x

Q(y, x)m(x).

If we can show∑
x

Q(y, x)m(x) = 0

� (A.5)
for all states y = (ρR, ρr) in the TLVM and y = (ρR, ρr, ρRr) in the CVM, then 
E[M(t+ u)−M(t) | S(t) = s] is independent of u so that (A.1) must be true. We can 
verify (A.5) by substituting the elements of QTLVM or QCVM from tables 1 or 2, respec-
tively, into (A.5).� □ 

The probability of a red consensus now follows from the following corollary.

Corollary A.2.  If the initial state is

S(0) =

{
(ρR, ρr) in the TLVM,

(ρR, ρr, ρRr) in the CVM,

then the probability of reaching a red consensus is m(ρR, ρr), where m is defined by (12).

Proof.  The time Tcons until the consensus is reached is a stopping time and M is a 
martingale with time-independent upper and lower bounds, namely 0 and 1. Thus, 
E[M(Tcons)] = E[M(0)]. Because M(Tcons) can only be 0 (blue consensus) or 1 (red con-
sensus), we must have P (red consensus) = EM(Tcons) = EM(0) = m(ρR, ρr).� □ 
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Appendix B. Derivation of the short-term evolution of the TLVM and CVM

In this appendix, we derive the conditional mean and variance of a future state shortly 
after the system was in state S defined by (A.2).

Theorem B.1.  We define s = (ρR, ρr) in the TLVM and s = (ρR, ρr, ρRr) in the CVM. 
In both the TLVM and the CVM, the conditional expectation of a future state after a 
time u � 0 is given by

E [SR(t+ u) | S(t) = s] =
iρR + eρr + e[ρR − ρr] exp[−(e+ i)u]

e+ i
,� (B.1)

E [Sr(t+ u) | S(t) = s] =
iρR + eρr + i[ρr − ρR] exp[−(e+ i)u]

e+ i
,� (B.2)

independent of N, whereas the conditional variances satisfy

var [SR(t+ u) | S(t) = s] = O(N−1),� (B.3)

var [Sr(t+ u) | S(t) = s] = O(N−1).� (B.4)

Therefore, if N � 1, the exponential decay in (B.1) and (B.2) is much faster than the 
increase in the variances.

Proof.  We outline the proof of (B.1). Equations (B.2)–(B.4) can be derived similarly.
From (A.3), it follows that the conditional expectation is

E[SR(t+ u) | S(t) = s] =
∑
x

xR[exp(uQ)]s,x

=
∞∑
k=0

{
uk

k!

∑
x

xRQ
k(s, x)

}
,

�

(B.5)

where Q is the transition rate matrix QTLVM or QCVM from table 1 or 2, respectively. 
The summation in (B.5) is over all states x = (xR, xr) in the TLVM or x = (xR, xr, xRr) 
in the CVM. Induction on k proves that∑

x

xRQ
k(s, x) = (−1)k−1e(e+ i)k−1(ρr − ρR),� (B.6)

for k = 1, 2, . . . Substituting (B.6) into (B.5), we obtain

�

E[SR(t+ u) | S(t) = s] = ρR +
e(ρR − ρr)

e+ i

∞∑
k=1

uk

k!
(−1)k(e+ i)k

=
iρR + eρr + e(ρR − ρr) exp[−(e+ i)u]

e+ i
.

□ 

Our next result characterizes the short-term evolution of SRr in the two-dimen-
sional approximation of the CVM defined by the transition rate matrix Q̃CVM given by 
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equations (16)–(22). Because in this approximation SR = Sr, it is sucient to charac-
terize the state S = (SR,Sr,SRr) by two values: the value of m defined in equation (12) 
and the value of ρRr assumed by the random variable SRr.

Theorem B.2.  The conditional expectation of SRr satisfies

E[SRr(t+ u) | S(t) = (m, ρRr)]

=
cm2 + (e+ i)m

c+ e+ i
+

(
ρRr −

cm2 + (e+ i)m

c+ e+ i

)
exp[−(c+ e+ i)u] +O(N−1).

� (B.7)
Thus, in the limit of large N, the conditional expectation approaches cm

2+(e+i)m
c+e+i

 after a 

transient of duration O[(c  +  e  +  i)−1]. The conditional variance satisfies

var[SRr(t+ u) | S(t) = (m, ρRr)] = O(N−1)

so that, during the transient, the increase in the conditional variance is negligible if 
N � 1.

Proof.  One can show by induction on k that
∑

(xm,xRr)

xa
mxRr(Q̃CVM)

k[(m, ρRr), (xm, xRr)] = (−1)k−1(c+ e+ i)k−1ma[cm2 + (e+ i)m

− (c+ e+ i)ρRr] +O(N−1)

for all nonnegative integers a and k = 1, 2, . . . For the special case a  =  0, it follows that

E[SRr(t+ u) | S(t) = (m, ρRr)] =
∞∑
k=0




uk

k!

∑
(xm,xRr)

xRr(Q̃CVM)
k[(m, ρRr), (xm, xRr)]





= ρRr −
cm2 + (e+ i)m− (c+ e+ i)ρRr

c+ e+ i

∞∑
k=1

[−(c+ e+ i)u]k

k!
+O(N−1)

= ρRr +

(
ρRr −

cm2 + (e+ i)m

c+ e+ i

)
[exp(−(c+ e+ i)u)− 1] +O(N−1).

� (B.8)
Rearranging the terms in (B.8) proves (B.7). A similar argument proves that the con-
ditional variance is O(N−1).� □ 
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