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The topology of large Open 
Connectome networks for the 
human brain
Michael T. Gastner1,2 & Géza Ódor2

The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at 
ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data 
sets for the human brain network made available by the Open Connectome Project. We apply statistical 
model selection to characterize the degree distributions of graphs containing up to  01 6 nodes and  01 8 
edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a 
good fit to most of the observed degree distributions. For almost all networks, simple power laws 
cannot fit the data, but in some cases there is statistical support for power laws with an exponential 
cutoff. We also calculate the topological (graph) dimension D and the small-world coefficient σ of these 
networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance 
connections provide only a small correction to the topology of the embedding three-dimensional space.

The neural network of the brain can be considered on structural (wired) as well as on functional connection lev-
els. Precise structural maps exist only on very small scales. Functional networks, based on fMRI, are available on 
larger datasets. However a clear-cut relationship between them is largely unknown. Drawing parallels between 
neural and socio-technological networks, neuroscientists have hypothesized that in the brain we have small-world 
networks, both on a structural1 and functional level2. Small-world networks are at the same time highly clustered 
on a local scale, yet possess some long-distance connections that link different clusters of nodes together. This 
topology is efficient for signal processing3,4, but doubts have remained if the small-world assumption is gener-
ally true for the brain. Despite some evidence that functional networks obtained from spatially coarse-grained 
parcellations of the brain are small worlds5, at a structural cellular level the brain may be a large-world network 
after all4,6.

Like the small-world property, the hypothesis that functional brain networks have scale-free degree distribu-
tions became popular around the turn of the millennium7,8. The degree ki of node i is defined as the number of 
edges adjacent to i. Because the degree is a basic measure of a node’s centrality, the probability Pr(k) that a node 
has degree k has played a key role in network science for a long time9. Especially physicists have popularized 
power law fits to observed degree distributions10,11. When such a fit is statistically justified, the network is called 
formally “scale-free”. Power laws play a crucial role in statistical physics, where they arise at transitions between 
an ordered and unordered phase because of the absence of a characteristic length scale. There are theoretical and 
empirical arguments that the brain operates near such a critical point12–15. For this reason it is plausible to assume 
that, on a functional level, the connectome’s degree distribution is also scale-free. More sophisticated statistical 
analyses of the functional connectome justify skepticism about the scale-free hypothesis16–18. Until now there are 
only few results for degree distributions of structural brain networks, and these do not show clear evidence for 
power laws19.

In this article we answer whether the structural connectome at an intermediate spatial resolution can be 
viewed as a scale-free, small-world network. We analyze large data sets collected by the Open Connectome pro-
ject (OCP)20 that describe structural (rather than functional) brain connectivity. The particular data sets chosen 
by us were processed by members of the OCP from the raw diffusion tensor imaging data by Landman et al.21. 
Earlier studies of the structural network have analyzed much smaller data. For example the network obtained by 
Sporns et al., using diffusion imaging techniques22,23, consists of a highly coarse-grained mapping of anatomical 
connections in the human brain, comprising N =​ 998 brain areas and the fiber tract densities between them. The 
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entire brain is made up of ~9 ×​ 1010 neurons24, but current imaging techniques cannot resolve such microscopic 
detail. The networks investigated in this article have up to ~106 nodes, which puts them on a scale that is halfway 
between the earlier coarse-grained view and the complete neural network.

One important measure which could not have been estimated previously because of too coarse-grained data 
is the topological (graph) dimension D. It is defined by

∼N r , (1)r
D

where Nr is the number of node pairs that are at a topological (also called “chemical”) distance r from each other 
(i.e. a signal must traverse at least r edges to travel from one node to the other). The topological dimension char-
acterizes how quickly the whole network can be accessed from any of its nodes: the larger D, the more rapidly the 
number of r-th nearest neighbors expands as r increases. Different small-world networks can possess different D,  
for example due to their distinct clustering behavior6. Therefore, the level of small-worldness (quantified for 
example by the coefficient defined by Humphries and Gurney25) and the topological dimension contain different 
information.

Distinguishing between a finite and infinite topological dimension is particularly important theoretically. It 
has been conjectured that heterogeneities can cause strong rare-region effects and generic, slow dynamics in a 
so-called Griffiths phase26, provided D is finite27. Criticality28 or even a discontinuous phase transition is smeared 
over an extended parameter space. As a consequence, a signalling network can exhibit behavior akin to criticality, 
although it does not operate precisely on a unique critical point that sharply divides an ordered from a disordered 
phase. This phenomenon is pronounced for the Contact Process29, a common model for the spread of activity in a 
network. Subsequent studies found numerical evidence for Griffiths effects in more general spreading models in 
complex networks, although the scaling region shrinks and disappears in the thermodynamic limit if D →​ ∞​30–33.  
Recently Griffiths phases were also reported in synthetic brain networks34–36 with large-world topologies and 
with modular organization, which enhances the capability to form localized rare-regions. Real connectomes have 
finite size, so they must possess finite D. If in real connectomes D remains small, these models hint at an alterna-
tive explanation why the brain appears to be in a critical state: instead of the self-tuning mechanisms that have 
been frequently postulated37,38, the brain may be in a Griffiths phase, where criticality exists without fine-tuning. 
Models with self-tuning require two competing timescales: a slow “energy” accumulation on the nodes and a 
fast redistribution by avalanches when the energy reaches the firing threshold. It is unclear if such a separation 
of timescales is realistic. Even if the brain were in a self-organized critical state with clearly separated timescales, 
Griffiths effects can play an important role due to the heterogeneous behavior of the system, frequently over-
looked when modelling the brain.

Open Connectome brain network data
The data sets analyzed in this article were generated by members of the OCP with the MIGRAINE method 
described by Roncal et al.39. In this section we will briefly summarize their methods. Afterwards we will describe 
our analysis which was based on the graphs publicly available from the OCP web site20. The raw input data used 
by the OCP consist of both diffusion and structural magnetic resonance imaging scans with a resolution of 
1mm3 (i.e. the size of a single voxel). MIGRAINE combines various pieces of software into a “pipeline” to trans-
form this input to a graph with 105–106 nodes.

As an intermediate step, the processing software first generates a small graph of 70 nodes40. For this purpose 
the image is downsampled into 70 regions taken from the Desikan gyral label atlas41. During this step the software 
also identifies the fibers in the brain with deterministic tractography using the Fiber Assignment by Continuous 
Tracking (FACT) algorithm42. As stopping thresholds a gradient direction of 70 degrees and a stopping intensity 
of 0.2 were used.

These fibers are then reanalyzed in the next step of data processing. The Magnetic Resonance One-Click 
Pipeline outlined by Mhembere et al.43 generates a big graph where each voxel corresponds to one node. First a 
“mask” is defined, for example the 70 regions included in the small graph. Then all data outside the mask are dis-
carded and an edge is assigned to each remaining voxel pair that is connected by at least one fiber staying within 
the boundaries of the mask. This procedure will naturally produce hierarchical modular graphs with (at least) two 
quite different scales.

At this point each scan has been turned into a network with 107 vertices and 1010 edges. However, due to 
the image processing algorithm (especially because the mask is chosen conservatively), many of these voxels will 
become disconnected and must be considered as noise. To clean up the data, all vertices outside the largest con-
nected component are removed. According to Roncal et al.39 the remaining graph “keeps essentially all white 
matter voxels, consisting of ≈​105 vertices and ≈​108 edges”.

One important point to note is that two voxels A and C are linked by an edge even if there are other voxels  
B1, …​, Bn between A and C on the same fiber. For example, if one traverses voxels A, B, C on a fiber, the edges  
(A, B), (A, C) and (B, C) are all part of the graph. Furthermore, the edges are undirected so that (B, A), (C, A) and 
(C, B) are also part of the graph because the FACT algorithm cannot provide information about the direction 
of an edge. Note that confounding factors such as the measurement technique, spatial sampling, measurement 
errors and the network-construction method can affect the graph data we downloaded44. We cannot control 
them, but tested the robustness of our conclusions by modifying one of the networks by neglecting a fraction 
of edges that might have arisen as a consequence of the transitivity rule. Additionally, we tested the effect of 
changing the reference null model from a nonspatial model (the ErdŐs-Rényi graph) to a spatial one (the random 
geometric graph, see section “Small-world coefficient” below).

To save space the OCP data files store only one of the directions (i.e. the upper triangle of the adjacency 
matrix) so that the opposite direction must be inferred from the data and inserted into the graph.
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There were 3 different sets of big human brain graphs available from the OCP website20 with the abbreviations 
KKI (Kennedy Krieger Institute), MRN (Mind Research Network) and NKI (Nathan Kline Institute). The raw 
data are described by Landman et al.21, Jung et al.45 and Nooner et al.46, respectively. We analyzed the KKI graphs 
numbered 10 to 19 in more detail. Some graph invariants (e.g. degrees, clustering coefficients) were calculated 
and analyzed by Mhembere et al.43, but for the present study we have recalculated all invariants directly from the 
graph data available from the OCP website.

Degree distribution
Model selection.  We want to assess how well different probability distributions fit the degrees of the OCP 
graphs. A first rough-and-ready visual attempt supports the hypothesis that the tails might be stretched expo-
nentials, for example for the networks KKI-10 and KKI-18 in Fig. 1. However, such visual techniques have no 
inferential power. Even if the fitted parameters come from ordinary least-squares regression toolboxes, the fitted 
parameters in general do not converge to the true values even if the number of data points is large. Moreover, 
least-squares regression lacks a statistically principled criterion for comparing different models with each other.

A statistically sound framework for model selection is information theory. Here we adopt the 
information-theoretic methodology proposed by Handcock and Jones47 who fitted different functions to degree 
distributions in sexual contact networks. The key idea is that a good model should perform well in terms of two 
opposing objectives. On one hand the model should have enough flexibility so that it is able to fit the observed 
distribution. On the other hand it should have only a minimal number of parameters. In general, the more param-
eters we have at our disposal, the better we can fit the observation.

The goodness of fit can be quantified by the likelihood function which, under the assumption of independent 
observations, has the form

∏= .
=

kv v( ) Pr( , )
(2)i

N

i
1



Here v is the set of parameters in the model, N the number of observations, and k1, …​, kN are the observed 
degrees. Alternatively we can write the likelihood as

∏=
=

kv v( ) [Pr( , )] ,
(3)i k

k

i
ni

min

max



where kmin and kmax are the minimum and maximum observed degrees and ni is the number of times we observe 
the degree ki. In the graphs KKI-10 through KKI-19, kmin is always equal to 1; kmax ranges from 5154 to 11241. In 
the extreme case of allowing as many parameters as there are observed degrees we can achieve a maximal likeli-
hood of e−NH, where = −∑ = ( )H lni k

k n
N

n
N

i i

min
max  is the Shannon entropy of the data. However, such a highly param-

eterized model is no longer informative, because it fits only the particular connectome used as input and sheds 
little light on general features that different connectomes might have in common.

Statisticians have proposed several “information criteria” to address this problem of over-fitting (e.g. Bayesian, 
deviance or Hannan-Quinn information criteria). These are objective functions that rate the quality of a model 
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Figure 1.  Empirical degree distributions of the KKI-10 and KKI-18 graphs (solid lines). Dashed lines show 
a rough-and-ready approach: ordinary least-squares fits for k > 1000 for the two graphs (short-dashed line for 
fit to KKI-18, long-dashed line for KKI-10) suggest stretched exponential tails. While ordinary least-squares fits 
are not a sound basis for model selection, we demonstrate in this article that there is indeed statistical evidence 
in favor of a generalized three-parameter Weibull distribution with a stretched exponential tail.
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based on a combination of the likelihood  and the number of parameters K. In this study we apply the Akaike 
information criterion with a correction term for finite sample size48,

= − + +
+

− −
ˆ K K K

N K
vAIC 2 ln( ( )) 2 2 ( 1)

1
, (4)c 

where = …ˆ ˆ ˆv vv ( , , )K1  is the set of parameters that maximizes ; as before, N is the number of observations. The 
last term in Eq. 4 is a second-order bias correction which, although not in Akaike’s original formula49, gives more 
accurate results if N K50.

While the absolute size of AICc is not interpretable, differences in AICc are informative and allow us to quan-
titatively compare different models48. If we denote the AICc value of model j by AICc

j( ) and the minimum over all 
models by AICc

(min), then the difference

∆ = −AIC AIC (5)j c
j

c
( ) (min)

estimates the relative expected Kullback-Leibler distance between model j and the estimated best model51. As a 
rule of thumb, models with ∆ <



2j  have substantial empirical support; models with Δ​j >​ 10 on the other hand are 
unlikely candidates to explain the data48.

Burnham and Anderson48 list many theoretical reasons in favor of model selection based on AICc. The 
Bayesian information criterion (BIC), although almost equally popular, has been reported to yield poor results 
when used to fit power-law tails in probability distributions52 because it tends to underestimate the number of 
parameters. The Akaike information criterion penalizes less severely for additional parameters: in the limit 
N K  the penalty is asymptotically equal to the term 2K in Eq. 4, whereas the equivalent term in the BIC grows 

as K In(N). We carried out Monte Carlo simulations on synthetically generated probability distributions of the 
type described in the next section (see supplementary material). We found that model selection by AICc came 
close to the true number of parameters. Although the BIC showed acceptable performance, we confirmed that it 
indeed favors a too small number of parameters. We therefore advocate the use of AICc rather than BIC for fitting 
degree distributions.

Candidate models.  The first step of AICc-based model selection is the definition of several candidate models 
that might generate the observed distribution. We denote as before by Pr(k) the probability that a node has degree 
k. The distinctive feature of different candidate models is the asymptotic decay of Pr(k) for k 1. Only in this 
limit we can hope to find scale-free behavior if it indeed exists. Of course, all real networks are finite so that, 
strictly speaking, we cannot take the limit k →​ ∞​. If we restrict ourselves to only a few high-degree nodes, we have 
too few data points for a meaningful fit. On the other hand, if we include too many low-degree nodes, then we 
may misjudge the correct asymptotic behavior of Pr(k).

We therefore assume for all candidate models that there is an optimal cutoff point kc that separates nodes with 
degree ≤​kc from the region where a hypothesized asymptotic function F (k) can fit the data47,

∑
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Each parameter Ak is chosen so that Pr (k) =​ Ak for k =​ 1, …​, kc. Different families of candidate models can be 
defined by different functions F (k). We list all the functions F investigated in this study in Table 1. The exponen-
tial function (EXP) is the candidate that decays most rapidly in the right tail. The power law (POW) has two 
parameters: an exponent β >​ 0 and a constant α >​ 0 that shifts the function to the left or right. The tail αk  has 
the conventional power law form F (k) ∝​ k−β. The discrete log-normal (LGN) and Weibull (WBL) distributions 
are represented by the usual distribution functions of their continuous namesakes. We also include two 
three-parameter models: a truncated power law (TPW) and the generalized Weibull distribution (GWB). In com-
parison to POW, TPW includes an additional exponential factor which is often used to mimic finite-size cutoffs 
in the right tail. GWB is a standard three-parameter generalization of WBL with an additional parameter γ, called 
location parameter, that shifts the distribution to the right or left53.

Model F(k)

exponential (EXP) e−αk

power law (POW) αβ (k +​ α)−β

log-normal (LGN) − α
β
−( )erf k1

2
1
2

ln
2

Weibull (WBL) exp (−​αkβ)

truncated power law (TPW) αβ (k +​ α)−β e−γk

generalized Weibull (GWB) exp [α (γβ −​ (k +​ γ)β)]

Table 1.   Investigated candidate models for the degree distribution.
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We can distinguish the members of each candidate model family by the choice of kc, the values of …A A, , k1 c and 
α, β, γ. Model selection by AICc gives a natural criterion for the optimal parameters matching an observed distribution. 
It is a simple exercise to prove that  is maximized if Ak equals the observed relative frequency of nodes with degree k,

= .A n
N (7)k

k

For a fixed value of kc, standard numerical algorithms can optimize the remaining parameters α, β and γ in Table 1 
to maximize . After calculating these maximum-likelihood estimators for every kc between 0 and kmax, we search for 
the value of kc that minimizes AICc of Eq. 4. The number K of parameters that we have to insert into this equation is

•	 K =​ kc +​ 1 for EXP,
•	 K =​ kc +​ 2 for POW, LGN and WBL,
•	 K =​ kc +​ 3 for TPW and GWB.

Results of model selection.  For each candidate model and each kc =​ 0, …​, kmax we compute the AICc. We 
then determine the smallest AICc

(min) from the entire set and calculate for each model j the difference Δ​j defined 
in Eq. 5. In Fig. 2 we show for the example of the network KKI-18 the best-fitting distribution within each candi-
date model family. We have chosen a logarithmic scale for the ordinate to highlight the differences in the right tail. 
While the exponential and simple Weibull distributions decrease too rapidly, the power law and log-normal dis-
tributions decay too slowly. The truncated power law and generalized Weibull distributions are better in mimick-
ing the overall shape of the distribution.

We find that, broadly speaking, this observation is typical of the ten investigated connectomes. As we see 
from Table 2, in 9 out of the 10 investigated networks we can achieve Δ​j <​ 10 with the GWB distribution. In 6 out 
of 10 cases, there is a similar level of evidence for the TPW model which has been previously hypothesized for 
functional brain networks54–56. For all other candidate distributions there is either none or very sporadic statis-
tical support. When interpreting Table 2, one should bear in mind that even the best-fitting model is only “best” 
compared with the other tested candidates. True brain networks are of course far more complicated than any of 
our candidate models. Even if there were a “true” model, searching for “the” degree distribution of the human 
connectome is not a sensible endeavor because it would certainly be a highly complex model that is unlikely ever 
to be discovered and included in the set of candidates. As we discuss in the supplementary information, we can 
nevertheless sensibly ask which candidate model comes closest to the truth in the sense that it minimizes the 
Kullback-Leibler divergence. With this interpretation, we conclude that GWB is generally the best of our candi-
dates. The fact that not all of the ten data sets are best fitted by the same model does not call this conclusion into 
question. Just as in traditional p-value based hypothesis testing, we also expect in AICc-based model selection that 
the best general model is sometimes rejected by random chance for a concrete data sample.

A closer look at the fitted GWB values (Table 3) shows that, with the exception of KKI-16 where GWB is 
rejected by the AICc, the β exponents lie within one order of magnitude suggesting a common trend if not even 
universality. This order of magnitude also agrees with the least-squares fit in Fig. 1.

Dimension Measurements
To measure the dimension of the network57 we first computed the distances from a seed node to all other nodes by 
running the breadth-first search algorithm. Iterating over every possible seed, we counted the number of nodes Nr 
with graph distance r or less from the seeds and calculated the averages over the trials. As Fig. 3 shows, an initial 
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Figure 2.  The maximum-likelihood distributions from each model family for matching the degree 
distribution of network KKI-18. In this example the generalized Weibull distribution is the best compromise 
in the right tail (see Table 2).
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power law crosses over to saturation due to the finite network sizes. We determined the dimension of the network, 
as defined by the scaling law (1), by attempting a power-law fit to the data N(r) for the initial ascent. This method 
resulted in dimensions between D =​ 3 and D =​ 4.

To see the corrections to scaling we determined the effective exponents of D as the discretized, logarithmic 
derivative of (1)

connectome 
KKI-…

Δj

EXP POW LGN WBL TPW GWB

10 1317.82 202.90 204.81 73.70 0.00 3.52

11 1245.42 17.39 0.00 38.75 1.21 0.43

12 992.62 43.28 21.83 174.19 0.00 0.73

13 767.95 155.43 72.68 221.50 3.45 0.00

14 792.10 117.26 124.21 85.74 0.00 9.57

15 1094.40 120.99 139.87 26.19 86.06 0.00

16 954.28 18.81 29.99 66.59 0.00 17.20

17 736.42 195.15 216.05 18.16 49.47 0.00

18 1168.50 109.51 109.90 185.59 51.81 0.00

19 1006.80 3.91 47.07 190.19 0.56 0.00

Table 2.   Smallest relative Akaike information criterion ∆ = −AIC AICj c
j

c
min( ) ( ) for each candidate degree 

distribution. We highlight in bold font all Δ​j <​ 10. For all other models j there is essentially no empirical 
support48.

id kc α β γ

 10 115 0.239 0.4486 110.22

11 309 1.619 0.2700 208.37

12 119 2.597 0.2382 270.62

13 35 0.669 0.3519 100.98

14 114 0.411 0.4232 199.25

15 83 0.064 0.6021 −​18.51

16 101 45.670 0.0507 379.24

17 21 0.057 0.6437 −​4.60

18 94 0.358 0.4260 141.72

19 112 8.329 0.1645 502.64

Table 3.   Summary of fitted parameters of the GWB model for the investigated KKI graphs.
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As the inset of Fig. 3 shows, Deff(r) tends to values below 4 even in the infinite size limit, but the narrow scaling 
region breaks down for r >​ 5. Furthermore, the extrapolated values for D of the connectomes exhibit an increas-
ing tendency with N as we will now explain in detail.

For better understanding we have also performed the analysis for other graphs besides KKI, possessing graph 
sizes in different ranges of N. The finite size scaling results are summarized in Fig. 4, where we also extrapolate 
to N →​ ∞​. As one can see, the dimension values follow the same trend for KKI-, MRN- and NKI-graphs without 
any clear sign of saturation. A power-law fit to the data with the form A +​ BNC is also shown, suggesting that 
D diverges for infinite N. It is tempting to extrapolate with this function to larger sizes or even to the infinite 
size limit. However, since we can rule out that the degree distributions are scale-free, we cannot assume that 
such extrapolated graphs faithfully represent connectomes of finer resolution. For example, using this power-law 
extrapolation we would overestimate their maximum degree kmax.

Thus the present data does not permit claiming any particular numeric value for the dimension D of the true 
(i.e. microscopically resolved) brain connectome.

We cannot modify the algorithms that generate the OCP graphs, but tested the robustness by randomly 
removing 20% of the directed graph connections in case of the KKI-18 network. This makes the network partially 
directed, more similar to a real connectome. As a result the graph dimension did not change much: D =​ 3.2(2) 
instead of 3.05(1). Since the majority of edges are short, a random removal results in a relative enhancement of 
long connections, but D increases only slightly.

Small-world coefficient
Small-worldness can be characterized by different definitions. One of them is the so-called small-world coef-
ficient σ, which is defined as the normalized clustering coefficient (C/Cr) divided by the normalized average 
shortest path length (L/Lr),

σ =
C C
L L

/
/

,
(9)

r

r

where the normalization divides the observed quantity (C or L) by the expectation value (Cr or Lr) for an  
ErdŐs-Rényi (ER) random graph with the same number of nodes and edges25.

There are two different definitions of a clustering coefficient in the literature. The Watts-Strogatz clustering 
coefficient58 of a network of N nodes is

∑= −C
N

n k k1 2 / ( 1),
(10)

W

i
i i i

where ni denotes the number of direct edges interconnecting the ki nearest neighbors of node i. An alternative is 
the “global” clustering coefficient59, also called “fraction of transitive triplets” in the social networks literature60,

= .∆C number of closed triplets
number of connected triplets (11)
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Figure 4.  Topological dimension as a function of network size using different data sets. The line shows a 
power-law fit for the combined KKI, MRN, NKI results.
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Both definitions are in common use, but values for CW and CΔ can differ substantially because Eq. 10 gives greater 
weight to low-degree nodes.

The average shortest path length is61

∑=
− ≠

L
N N

d i j1
( 1)

( , ),
(12)j i

where d (i, j) is the graph distance between vertices i and j. L is only properly defined if the network is connected 
because otherwise the graph distance between some voxels is infinite.

We have calculated C and L for the largest connected components of several KKI networks directly from the 
edge lists on the OCP website20. The CΔ values are about half of those for CW (see Table 4). A finite size scaling 
analysis shows that the values of L, CΔ and CW decay by increasing the size N (see Fig. 5). For the average shortest 
path-length this decay is rather fast; a least-squares regression with the form a +​ b(1/N)c results in .c 0 29 and 

.a 0 016. The constant is near zero within the precision of data, so in the infinite size limit we see small-world 
behavior. The clustering coefficients are almost constant; the power-law fit provides a very small slope: .c 0 046 
in agreement with the behavior of modular graphs62. The decreasing trends for L, CW and CΔ as functions of N are 
statistically significant at the 5% significance level; the p-values for t-tests of zero slope for the log-transformed 
data are 0.03, 0.002 and 0.04 respectively. Again, finite size scaling has to be interpreted with caution given that 
the topology is not scale-free.

As before, we tested the robustness, this time by deleting 10% randomly chosen undirected edges. We obtained 
very little changes: L =​ 11.37 (previously: 11.30), CW =​ 0.538 (previously: 0.598) CΔ =​ 0.322 (previously: 0.358).

KKI N Nedges 〈k〉 L Lr CW CΔ Cr σW σΔ

10 9.40 ×​ 105 8.68 ×​ 107 184.71 11.38 3.02 5.94 ×​ 10−1 3.20 ×​ 10−1 1.97 ×​ 10−4 803.26 433.09

11 8.63 ×​ 105 7.07 ×​ 107 163.84 12.25 3.07 5.99 ×​ 10−1 3.24 ×​ 10−1 1.90 ×​ 10−4 789.23 427.69

12 7.44 ×​ 105 4.98 ×​ 107 133.79 13.91 3.14 6.02 ×​ 10−1 3.58 ×​ 10−1 1.80 ×​ 10−4 757.12 450.43

13 8.46 ×​ 105 5.93 ×​ 107 140.17 12.96 3.14 6.02 ×​ 10−1 3.56 ×​ 10−1 1.66 ×​ 10−4 881.74 521.58

14 7.70 ×​ 105 5.36 ×​ 107 139.10 13.10 3.13 6.01 ×​ 10−1 3.62 ×​ 10−1 1.81 ×​ 10−4 794.64 478.99

15 8.47 ×​ 105 6.94 ×​ 107 163.84 12.80 3.06 5.99 ×​ 10−1 3.32 ×​ 10−1 1.94 ×​ 10−4 740.79 411.13

16 7.60 ×​ 105 5.70 ×​ 107 150.11 12.03 3.09 6.02 ×​ 10−1 3.38 ×​ 10−1 1.98 ×​ 10−4 782.48 438.63

17 7.87 ×​ 105 5.20 ×​ 107 132.29 13.00 3.16 6.02 ×​ 10−1 3.73 ×​ 10−1 1.68 ×​ 10−4 869.74 529.15

18 8.49 ×​ 105 6.63 ×​ 107 156.21 11.30 3.09 5.98 ×​ 10−1 3.58 ×​ 10−1 1.84 ×​ 10−4 888.09 531.35

19 7.31 ×​ 105 4.94 ×​ 107 134.99 13.17 3.14 6.02 ×​ 10−1 3.59 ×​ 10−1 1.85 ×​ 10−4 775.96 462.90

Table 4.   Summary of small-world properties for the studied KKI graphs. N, Nedges: number of nodes and 
edges. 〈​k〉:​ mean degree. L: average shortest path length. Lr: expectation value for the average shortest path 
length in ErdŐs-Rényi graphs with the same N and Nedges. CW, CΔ: clustering coefficients defined by Eqs 10 and 
11, respectively. Cr: mean clustering coefficient in ErdŐs-Rényi graphs. σW, σΔ: small-world coefficient defined 
by Eq. 9, based on either CW or CΔ.
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Figure 5.  Network invariants as a function of 1/N for the investigated KKI graphs from Table 4. Lines show 
power-law fits.



www.nature.com/scientificreports/

9Scientific Reports | 6:27249 | DOI: 10.1038/srep27249

Due to the transitivity of OCP graphs, one may question the validity of using ER graphs as a null model. 
Especially the high clustering can be at least partly attributed to the spatial embedding so that, for example, 
three-dimensional random geometric graphs63 are useful as comparison. Random geometric graphs have indeed 
a much higher clustering coefficient64, CW =​ 15/32, a similar value to CW in the OC graphs. To circumvent such 
problems Telesford et al.65 suggested another small-world criterion, using a “latticized” version of the graph for 
reference. However, as they pointed out, the latticization algorithm is computationally too demanding for large 
graphs. Their algorithm is in practice feasible only for up to N 104 nodes, thus the necessary memory and 
run-times are prohibitive in our case.

We therefore kept the ER graphs as our null model and calculated the corresponding small-world coefficient 
σ in Eq. 9. We determined the clustering coefficient of the corresponding random networks Cr =​ 〈​k〉​/N, where  
〈​k〉​ is the mean degree. We have computed the average path length of the corresponding ErdŐs-Rényi networks 
with the formula66

=
− .

+L N
k

ln( ) 0 5772
ln

1/2,
(13)

r
l

where Nl is the size of the largest component.
Applying these formulas to the KKI graphs, the last two columns of Table 4 show that σW, σ∆ 1 for all cases, 

suggesting small-world behavior according to this definition. These values do not show any tendency with respect 
to N: the t-tests for zero slope have p-values 0.45 and 0.72 for σW and σΔ, respectively.

Conclusions
Let us return to our introductory question: are the structural connectome graphs from the OCP database 
scale-free, small-world networks? As far as the adjective “scale-free” is concerned, the answer is clearly no. We 
have applied model selection based on the Akaike information criterion to 10 graphs comparing 6 different 
degree distribution models. The observed distributions are best fitted by the generalized Weibull function with 
a stretched exponential tail ∝​exp (−​kβ). Most of the exponents β are between 0.2 and 0.5, which may hint at a 
universal trend. In some cases a truncated power law is a plausible alternative. However, the truncation occurs at 
a degree much smaller than the number of nodes in the network so that one cannot regard these distributions as 
scale-free.

Unlike the term “scale-free”, the adjective “small-world” does apply to the OCP connectomes in the sense that 
the small-world coefficients are much larger than 1. We have performed a finite size scaling analysis using several 
graphs and found no dependence between the number of nodes N and the small-world coefficients. The average 
path length, however, decreases as N increases. The resolution to this apparent paradox is that the average degree  
〈​k〉​ increases with N so that there is an increasing number of shortcuts through the network. On the other hand, 
we obtained small topological dimensions characteristic of large-world networks. The dimensions show a ten-
dency to grow as the sizes of the studied graphs increase. The limit N →​ ∞​ here is taken by increasing N for a fixed 
voxel size. The absence of a scale-free degree distribution suggests that this limit may not be equivalent to fixing 
the brain volume and instead resolving the details of the connectome at an infinitely small scale. For this reason, 
it is difficult to judge whether Griffiths effects can be found in the brain, but the small topological dimensions that 
we have observed warrant further investigation.

Our analysis has been based on unweighted graphs. More realistically, however, the connectome is a weighted, 
modular network. Links between modules are known to be much weaker than the intra-module connections. 
Thus, future studies should take into account that signals in the brain propagate on a weighted, heterogeneous 
network, where generic slow dynamics is a distinct possibility67. The methods presented here to characterize 
degree distributions and topological dimensions can be generalized to the weighted case. We hope that, as more 
precise and finely resolved connectome data will become available, future research will be able to assess whether 
Griffiths phases can indeed occur in the brain.
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