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Cartograms are maps that rescale geographic regions (e.g., coun-
tries, districts) such that their areas are proportional to quanti-
tative demographic data (e.g., population size, gross domestic
product). Unlike conventional bar or pie charts, cartograms can
represent correctly which regions share common borders, result-
ing in insightful visualizations that can be the basis for further
spatial statistical analysis. Computer programs can assist data sci-
entists in preparing cartograms, but developing an algorithm that
can quickly transform every coordinate on the map (including
points that are not exactly on a border) while generating recog-
nizable images has remained a challenge. Methods that translate
the cartographic deformations into physics-inspired equations of
motion have become popular, but solving these equations with
sufficient accuracy can still take several minutes on current hard-
ware. Here we introduce a flow-based algorithm whose equations
of motion are numerically easier to solve compared with pre-
vious methods. The equations allow straightforward paralleliza-
tion so that the calculation takes only a few seconds even for
complex and detailed input. Despite the speedup, the proposed
algorithm still keeps the advantages of previous techniques:
With comparable quantitative measures of shape distortion, it
accurately scales all areas, correctly fits the regions together,
and generates a map projection for every point. We demon-
strate the use of our algorithm with applications to the 2016
US election results, the gross domestic products of Indian states
and Chinese provinces, and the spatial distribution of deaths in
the London borough of Kensington and Chelsea between 2011
and 2014.

cartography | data visualization | statistical analysis | computer graphics

Aguideline for displaying statistical data in a diagram is the
“area principle”: Each part of the diagram should have an

area in proportion to the number it represents (1). For many cat-
egorical data, a bar chart is a simple visualization method that
satisfies the area principle. For example, if our data are the elec-
tors that voted for the US president in December 2016, we can
categorize the electors by US state. Every bar in Fig. 1, Top cor-
responds to a state that sent at least one Republican elector to
the Electoral College. In Fig. 1, Bottom, the bars show the states
with Democratic electors. The colors chosen for the bars are the
traditional red for Republicans and blue for Democrats. Because
the bar chart satisfies the area principle, the election is won by
the color that occupies more area, which is evidently red in this
example.∗

Although a bar chart is often a suitable visualization tool, it
cannot reveal the spatial pattern behind the data. The bar chart
in Fig. 1 lacks the information where the states are located:
Neighboring bars do not necessarily correspond to states that
are geographic neighbors. If we want to visualize how the states
fit together in real space, we need a different approach. The
common alternative is to show a map such as Fig. 2A, where
we use an Albers equal-area conic projection for the contigu-
ous United States to produce their familiar geographic out-
line. We add Alaska and Hawaii, suitably rescaled, below the
map of the contiguous United States. Each state is colored with

either red or blue, depending on the party affiliation of the
electors.†

The map in Fig. 2A accurately shows the relative area and posi-
tion of each state. However, it does not obey the area princi-
ple of statistics. For example, Montana (abbreviated MT in Fig.
2A) covers more than 2,000 times the area of Washington, DC,
but both regions have the same number of electors. On aggre-
gate, Republican electors won 74% of the US area in square
kilometers, but had only 57% of the vote share in the Electoral
College. So, Fig. 2A has the opposite problem of Fig. 1 where we
satisfied the statistical area principle, but conveyed no informa-
tion about the states’ locations. One might suspect that showing
the locations and simultaneously satisfying the area principle are
as impossible as squaring the circle. Fortunately, however, there
is a visualization method, known as a cartogram, that can tackle
this challenge (2, 3).

After a brief review and classification of cartograms, we intro-
duce a technique that produces cartograms of a quality compa-
rable to the most popular technique currently in use: the diffu-
sion cartogram (4). The technique proposed in this article solves
a completely different set of equations so that the computation
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lem by rescaling map regions in proportion to, for exam-
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generally been cumbersome or slow to calculate map projec-
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*Because of peculiarities in the US electoral system, the Electoral College is not an exact
representation of the proportion of votes cast by the US population at large. The
Republican candidate Donald Trump was elected as US president despite losing the
popular vote to the Democratic candidate Hillary Clinton. We show a cartogram of
the popular vote distribution in SI Appendix, section 1.

†The only exception is Maine which applies the “congressional district method”:
Although the majority in Maine voted for the Democratic candidate Hillary Clinton,
the Republican candidate Donald Trump still gained one electoral vote for winning the
second congressional district (abbreviated as ME2 in Fig. 2A).
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Fig. 1. A bar chart of the Electoral College vote for the US president in
2016. This diagram satisfies the area principle: The area of each bar is pro-
portional to the number of electors. However, from this bar chart it is not
clear where states are located geographically.

can finish within a fraction of the previously needed time. We
benchmark our algorithm with data from the United States,
India, China, and the London borough of Kensington and
Chelsea to demonstrate that our method accurately satisfies the
area principle and generates visually pleasing cartograms.

Classification of Cartogram Methods
In a cartogram, regions are deformed such that their areas are
equal to statistical data such as population, votes in an election,
or gross domestic product. An example, showing the Electoral
College on a cartogram, is the diagram in Fig. 2B which we
adapted from Wikipedia (https://commons.wikimedia.org/wiki/
File:Cartogram%E2%80%942012 Electoral Vote.svg). Similar
cartograms have been shown in the news media (5, 6). Here each
elector is represented by a small square. The squares are then
positioned with two objectives in mind. First, the shapes on the
cartogram should resemble those on the map in Fig. 2A. Second,
the set of neighboring states in Fig. 2 A and B should be the same.
Satisfying both objectives is not trivial. A careful comparison with
Fig. 2A shows that, for example, Arizona (AZ) and Texas (TX)
incorrectly appear as neighbors in Fig. 2B. On the other hand, the
geographic neighbors Colorado (CO) and Nebraska (NE) have
been separated in Fig. 2B to make space for other states in the
vicinity.

For certain applications, it is perfectly acceptable that neigh-
boring states are split apart. As long as the areas of the states
are proportional to the number of electors, such representations
are called noncontiguous cartograms (7). Dorling’s circular car-
tograms are good examples of noncontiguous cartograms that,
while not strictly maintaining the topology, indicate where the
represented regions are located (8). Contiguous cartograms, by
contrast, not only rescale the regions, but also keep the topology
intact (i.e., neighbors on the map are neighbors on the cartogram
and vice versa).

The methods that have been proposed for generating contigu-
ous cartograms fall into two distinct categories. The first group
consists of algorithms that operate only on the boundaries of
regions (9–17). Each region is represented by one or multiple
polygons. The input to these algorithms is a finite number of
polygon corners (x1, y1), . . . , (xn , yn). Here (xi , yi) is a projec-
tion of the longitude and latitude, usually obtained from a con-

ventional projection (e.g., plate carrée or an equal-area projec-
tion). The algorithm generates transformed polygon coordinates
T(x1, y1), . . . , T(xn , yn). For the first group of algorithms, these
n points are in fact the only output and, hence, we refer to them
as “boundaries-only” algorithms. In other words, boundaries-
only methods do not transform points that are in the interior
of a polygon. For example, on a US state cartogram (such as
Fig. 2B) we would not be able to uniquely locate a state cap-
ital such as Austin, TX, because it is far from any state bor-
der. One might symbolically place all capitals at the centroid
of the corresponding polygon, but some centroids might be out-
side the polygon if it is concave or contains holes (e.g., lakes or
enclaves). The situation is even more complicated if we want
to represent multiple distinct points or lines (e.g., rivers or
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Fig. 2. (A) A conventional map projection (here an Albers projection)
clearly shows the location of each state, but violates the area principle:
States that occupy a large area do not necessarily have a large number of
electors. (B) A cartogram of the 2016 Electoral College satisfies the area
principle. Each elector is represented by a small square at the approximate
location of the elector’s home state. Cartograms such as these are popular in
the media, but are not map projections in a strict sense: There is no contin-
uous mathematical function that transforms coordinates of longitude and
latitude to coordinates on the cartogram. For example, in B it is not possible
to identify the location of the state capitals (indicated by white circles in A).
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roads) inside a state as distinct objects on a boundaries-only
cartogram.

The second group of contiguous cartogram algorithms appro-
aches the problem from a different point of view by producing
a continuous transformation T for the entire continuous set of
longitudes and latitudes on the input map, including coordinates
that are not on a boundary (4, 18–22). We refer to this group
as “all-coordinates” algorithms. Generating the map projection
T for all longitudes and latitudes can be computationally more
demanding than shifting only the boundary coordinates. In fact,
for applications where only the boundaries are of interest—as
is the case for the US election map—the boundaries-only algo-
rithms can give adequate results. However, the run time of these
discrete algorithms typically increases steeply with the number
of corners. As a result, they often rely on coarse-grained input to
gain speed, for example by removing Michigan’s Upper Penin-
sula from the US map (12, 13, 16). If we wish to show data that
are resolved at a scale much finer than the polygons to be dis-
played [e.g., graticules for a fine, spatially regular grid (23) or
individual addresses], the all-coordinates algorithms usually out-
pace their boundaries-only counterparts.

In this article, we describe an all-coordinates algorithm that
needs only a few seconds to produce the complete projection T
for realistic input. Knowing T will allow us to show the positions
of all US state capitals with respect to the states’ boundaries (Fig.
3B) and the coordinates of individual death cases in London (Fig.
4 B and C).

Previous All-Coordinates Methods to Produce a Cartogram
Projection
For the sake of concreteness, let us assume that we want to make
a cartogram whose areas are proportional to the population. We
define the population density as the function ρ(x , y) such that a
small rectangular area element with the corners (x ± dx/2, y ±
dy/2) contains the population ρ(x , y) dx dy . Some data allow us
to model ρ(x , y) with variations on fine spatial scales. (Our appli-
cation below to the mortality statistics of Kensington and Chelsea
belongs to this category.) In other cases, it is more natural to
model ρ(x , y) as a piecewise constant function. For example,
California’s 55 electors can be represented by a constant den-
sity in this state equal to the number of electors divided by the
state’s geographic area.

An accurate cartogram must project the rectangle (x ± dx/2,
y ± dy/2) onto a quadrilateral T(x ± dx/2, y ± dy/2) in such a
way that the area of the quadrilateral is proportional to ρ dx dy .
In other words, we are looking for a 2D function T = (Tx ,Ty)
such that ρ(x , y) dx dy = ρ̄ dTx dTy , where ρ̄ depends neither on
x nor on y . Such a transformation T is called a density-equalizing
projection. Taking the limits dx→ 0 and dy→ 0 and assuming
that T is differentiable, we obtain the condition (4, 18)

∂Tx

∂x

∂Ty

∂y
− ∂Tx

∂y

∂Ty

∂x
=
ρ(x , y)

ρ̄
, [1]

which is called a prescribed Jacobian equation (24, 25). For con-
venience, we choose the constant ρ̄ to be the spatially averaged
density so that the total mapped area is preserved.

Eq. 1 alone does not uniquely specify T because it is only one
single equation for the two unknowns Tx and Ty (20). As a con-
sequence, there are infinitely many different strategies to obtain
a density-equalizing projection T. In practice, however, only a
few methods are computationally efficient, produce attractive
graphics, and are independent of the choice of coordinate axes.
Most of the methods that have been proposed in the literature
are based on physical analogies. A common metaphor is to view
the undistorted input map as a rubber sheet. Forces or stresses
act on the rubber sheet such that the points move toward equilib-
rium positions that satisfy Eq. 1 (19, 22). Although such mechan-
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Fig. 3. (A and B) The 2016 US Electoral College vote represented on car-
tograms generated with (A) the diffusion algorithm of ref. 4 and (B) the
alternative flow-based algorithm based on Eqs. 4–7. Insets for Hawaii and
Alaska apply to both A and B as these regions’ areas match both cartograms.
All areas differ by<1% from their target values (i.e., the proportion of votes
in the Electoral College). Cartograms A and B differ in detail, but appear
remarkably similar, considering that generating B needs only 2.5% of the
time required by the diffusion algorithm. The white circles indicate the posi-
tions of the state capitals.

ical metaphors make intuitive sense, there is no direct physical
connection between force and area. Therefore, it is not immedi-
ately obvious how the forces should be chosen as functions of
ρ(x , y) to ensure that Eq. 1 is valid. Some methods treat the
term “force” in a less literal sense so that the area constraints are
more explicitly part of the equations (9, 11). However, these algo-
rithms must take special care to avoid topological errors (e.g.,
regions that are flipped or boundaries that intersect themselves)
during the relaxation of the forces. Another method, based on
neural networks, starts by placing sample points on a regular
grid (26). During the training of the network, the samples are
attracted toward regions of high density to mimic the popula-
tion distribution. Their final positions define a mapping which
can produce a cartogram by considering its inverse. However, a
large number of sample points are necessary to produce smooth
boundaries.

An alternative physical metaphor is to view the process that
generates the cartogram as the flow of a fluid. In this analogy,
we think of the map as a Petri dish covered with a thin layer of
water. In an experiment, we would model the population density
ρ(x , y) by injecting small particles with spatially varying concen-
trations into the water layer. The particles then diffuse across the
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Fig. 4. (A–C) Maps with scatter plots of death cases in Kensington and Chelsea between 2011 and 2014 on (A) an equal-area map, (B) cartograms equalizing
the total population in each LSOA and (C) age-adjusted population (i.e., the expected number of deaths given the age and gender composition of the LSOA).
Cartogram B reveals a high per-capita mortality in LSOA 018C in the southeast of the borough caused by a nursing home located inside this polygon. When
accounting for the heterogeneous age distribution across the borough in C, LSOA 018C has approximately the expected number of death cases. In other
LSOAs, however, the expected and observed numbers differ. A kernel density estimate in D indicates an increasing trend in the age-adjusted death rate
from the southeast to the northwest.

entire Petri dish. In the long run, the probability density function
of finding a particle becomes a constant everywhere inside the
dish. We can make a cartogram by translating this simple physical
model of density equalization into a geographic map projection.

The most familiar process that equilibrates the density is
Brownian motion. On a macroscopic scale, the Fokker–Planck
equation that describes Brownian motion is Fick’s second law,
∂ρ/∂t =D∇2ρ. Here t stands for time, D is the diffusivity, and
∇2 is the Laplace differential operator. This equation, known as

the diffusion or heat equation, is at the heart of the “diffusion
cartogram” method (4, 25). An example of a diffusion cartogram
is Fig. 3A, where we show the US Electoral College results. The
diffusion algorithm guarantees that, unlike in Fig. 2B, each state
keeps its neighbors while still reaching the target areas to any
desired level of accuracy. The diffusion cartogram distorts the
shapes of the states, which is inevitable for any contiguous car-
togram method. The shapes are, however, still recognizable; this
is one of the reasons why diffusion cartograms have become
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popular in the past decade (3). Another reason is that, despite
the apparent complexity of the equations, they can be computed
relatively efficiently.

However, Fickian diffusion is only one of many types of fluid
dynamic rules that make particle densities equal everywhere. As
we argue now, there is an alternative that is computationally more
efficient while producing cartograms of comparable quality.

Flow-Based Cartogram with Linear Equalization
In a flow-based cartogram, the population density ρ is treated not
only as a function of position r = (x , y), but also as a function
of time t . For a density-equalizing projection, the density must
approach its mean in the long run: limt→∞ρ(x , y , t) = ρ̄ for all x
and y . That is, the particles must flow in such a way that all initial
differences in their density are completely leveled out over time.
This condition alone, however, does not yet define the projection
T. We must also know the velocity v(x , y , t) with which a point at
(x , y) is dragged along by the flow at time t . Because there are no
sinks or sources in the flow, v must satisfy the mass conservation
equation, also known as the continuity equation,

∂ρ

∂t
+∇· (ρv) = 0. [2]

If we know v(x , y , t) for all x , y , and t , we can compute the posi-
tion r(t) for a point that is initially at r(0),

r(t) = r(0) +

∫ t

0

v(r(t ′), t ′)dt ′. [3]

The projection T is the function that shifts r(0) to limt→∞r(t). In
SI Appendix, section 2, we explain in more detail why T is density
equalizing.

We can satisfy the continuity equation while simultaneously
demanding Fick’s law v =−D(∇ρ)/ρ. Substituting Fick’s law
into Eq. 2 shows that the evolution of ρ is then governed by
the heat equation ∂ρ/∂t =D∇2ρ. This is the key motivation
behind the diffusion cartogram method (4), but Fickian diffu-
sion is only one special case within a large class of processes in
which ρ relaxes to its mean density while satisfying the continuity
equation for some velocity field v. One advantage of Fickian dif-
fusion is that the corresponding flow is guaranteed to be free of
vortices that could cause severe local distortions in T. However,
Fickian diffusion is not unique in this respect (SI Appendix, sec-
tion 2) so that one is left wondering whether other vortex-free,
mass-conserving processes might also be suitable for generating
cartograms. As we now argue, if we replace the heat equation by
a linear equalization of the density toward the mean,

ρ(x , y , t) =

{
(1− t) ρ0(x , y) + t ρ̄ if t ≤ 1,
ρ̄ if t > 1,

[4]

we can indeed compute T significantly faster. It has been shown
that there exists a velocity field v for Eq. 4 so that the result-
ing transformation T satisfies Eq. 1 (24). We derive the concrete
formulas for v in SI Appendix, section 2, and give only a brief
summary here.

After an affine transformation of all coordinates, we place the
mapped area inside a rectangular box with bounding coordinates
xmin = 0, xmax =Lx , ymin = 0, ymax =Ly . (For later convenience,
we choose Lx and Ly to be integers.) If we demand that there is
no flow through the edges of the box, the velocity for t ≤ 1 can
be expressed in terms of sine and cosine Fourier transforms,

vx (x , y , t) =− Ly

πρ(x , y , t)

∞∑
m=1

∞∑
n=0

[
m

m2L2
y +n2L2

x

ρ̃mn

× sin

(
mπx

Lx

)
cos

(
nπy

Ly

)]
, [5]

vy(x , y , t) =− Lx

πρ(x , y , t)

∞∑
m=0

∞∑
n=1

[
n

m2L2
y +n2L2

x

ρ̃mn

× cos

(
mπx

Lx

)
sin

(
nπy

Ly

)]
[6]

with

ρ̃mn =
4

(δm0 + 1)(δn0 + 1)

×
∫ Lx

0

∫ Ly

0

ρ(x ′, y ′, 0) cos

(
mπx ′

Lx

)
cos

(
nπy ′

Ly

)
dx ′dy ′.

[7]

Here δ00 = 1 and δm0 = 0 if m 6= 0. For t > 1, we simply obtain
vx (x , y , t) = vy(x , y , t) = 0.

Eqs. 5–7 look superficially similar to the corresponding equa-
tions in the diffusion-based cartogram (4), but there are two
important differences. First, neither the sums in Eqs. 5 and 6 nor
the integral in Eq. 7 depend on t so that the Fourier transforms
need to be computed only once at the beginning of the calculation.
Second, after we have computed the Fourier transforms, here we
require only quick arithmetic operations: addition, subtraction,
multiplication, and division. For a diffusion cartogram, by con-
trast, we must repeatedly calculate time-dependent Fourier trans-
forms and evaluate the exponential function during the integra-
tion of Eq. 3 (SI Appendix, section 2). The speed of computing
the exponential function depends on details of the implementa-
tion and hardware, but is in general much slower than addition,
subtraction, multiplication, or division (27).

These mathematical differences alone already cut the time
needed per integration step by more than half. Another simplifi-
cation compared with the diffusion cartogram is that we need to
integrate Eq. 3 only until t = 1 instead of t =∞. The benefit is
that we no longer need to check whether the improper integral
over the velocity has sufficiently converged. Most importantly,
however, the integrals from different starting points r(0) can be
performed in parallel as we now explain.

We overlay the map with an Lx ×Ly square grid. For these
LxLy coordinates, we compute the sums and integrals in Eqs.
5–7 at the start of the calculation with the fast Fourier trans-
form algorithm (28). We have found that the time needed for this
one-time procedure is a negligible fraction of the total run time.
After storing the LxLy Fourier transforms in memory, we obtain
v(r, t) at each grid point r with basic arithmetic. Subsequently,
we find the integrand in Eq. 3 for nongrid positions r by inter-
polating between the grid points. We numerically approximate
the integral using a predictor–corrector method that automati-
cally adapts the size of the next time step. During each step, we
distribute the integration of the LxLy distinct integrands to dif-
ferent processing units. In practice, given the wide availability of
multicore processors nowadays, this parallelization enormously
boosts the speed of the calculation.

Benchmarking the Algorithm with Data for the United
States, India, and China
We have implemented the algorithm based on Eqs. 4–7 as a C
program. In this section, we illustrate its performance with three
case studies: the 2016 vote in the US Electoral College (Fig. 3B),
the distribution of India’s gross domestic product (GDP) by state
(Fig. 5), and mainland China’s and Taiwan’s GDP by province
(Fig. 6).

In each case, we first project the longitudes and latitudes of
the territorial borders with an Albers equal-area conic projection
onto a flat 2D space. As described above, we embed the resulting
map (Figs. 2A, 5A, and 6A, respectively) inside an Lx ×Ly rect-
angle whose edges act as reflecting boundaries for the flow. The
rectangular box should, on one hand, be chosen large enough so
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Fig. 5. (A and B) The states and union territories of India on (A) an equal-area map and (B) a cartogram where the area of each region is proportional
to GDP [data from Statistics Times (29)]. The two largest states by area, Rajasthan (RJ) and Madhya Pradesh (MP), shrink on the cartogram because they
rank only 7th and 10th in GDP, respectively. Maharashtra (MH), the state with the highest GDP, slightly grows on the cartogram. Even more striking is the
increase of Delhi (DL): Although small in area, the capital city has a higher GDP than many larger states. The opposite happens for Arunachal Pradesh (AR)
and several other northeastern states because they rank low in GDP. Our algorithm needs only 2.6 s to construct the cartogram. AN, Andaman and Nicobar
Islands; AP, Andhra Pradesh; AS, Assam; BR, Bihar; CH, Chandigarh; CT, Chhattisgarh; DD, Daman and Diu; DN, Dadra and Nagar Haveli; GA, Goa; GJ, Gujarat;
HP, Himachal Pradesh; HR, Haryana; JH, Jharkhand; JK, Jammu and Kashmir; KA, Karnataka; KL, Kerala; ML, Meghalaya; MN, Manipur; MZ, Mizoram; NL,
Nagaland; OD, Odisha; PB, Punjab; PY, Puducherry; SK, Sikkim; TG, Telangana; TN, Tamil Nadu; TR, Tripura; UK, Uttarakhand; UP, Uttar Pradesh; WB, West
Bengal.

that the cartogram is independent of the boundary conditions.
On the other hand, it should not be so large that we spend the
bulk of the run time on computing the projection T far from the

region of interest. As a compromise, we have chosen the side
length equal to 1.5 times the maximum of the countries’ north–
south and east–west extent. (These rectangular boxes are larger
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Fig. 6. (A and B) Provincial-level administrative divisions of mainland China and Taiwan on (A) an equal-area map and (B) a cartogram where areas
are proportional to GDP [data from Wikipedia (https://en.wikipedia.org/wiki/List of Chinese administrative divisions by GDP)]. Some coastal cities such as
Shanghai (SHG) and Hong Kong (HK) increase remarkably on the cartogram. By contrast, western states such as Xinjiang (XJ) and the Tibet Autonomous
Region (TAR) shrink dramatically. Despite the substantial deformations, our algorithm needs only 2.7 s to construct the cartogram. AH, Anhui; BJ, Beijing;
CQ, Chongqing; FJ, Fujian; GD, Guangdong; GS, Gansu; GX, Guangxi; GZ, Guizhou; HA, Hainan; HEB, Hebei; HEN, Henan; HL, Heilongjiang; HUB, Hubei; HUN,
Hunan; JL, Jilin; JS, Jiangsu; JX, Jiangxi; LN, Liaoning; MO, Macao; NM, Inner Mongolia; NX, Ningxia; QH, Qinghai; SAA, Shaanxi; SAX, Shanxi; SC, Sichuan;
SD, Shandong; TJ, Tianjin; TW, Taiwan; YN, Yunnan; ZJ, Zhejiang.
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than the frames shown in Figs. 5 and 6 whose purpose is purely
to visually separate the different panels in the figure.) The space
between the country and the edges of the box is filled with the
mean density ρ̄. Other choices are conceivable and may improve
shape preservation (e.g., by more faithfully retaining the outer
boundaries of the map), but they would result in more complex
computer code.

For the discrete Fourier transforms, we divide the large rect-
angular box into a grid of Lx ×Ly smaller squares (in our exam-
ples Lx =Ly = 512, but the number can be adjusted if neces-
sary) whose sizes are just fine enough to discern the smallest
geographic regions on each map: Washington, DC; Daman and
Diu in India (abbreviated DD in Fig. 5); and Macao in China
(MO in Fig. 6). Officially, these regions have neither the status
of a state nor that of a province: Washington, DC is a district,
Daman and Diu a union territory, and Macao a Special Adminis-
trative Region. We still include these regions on the cartograms
because they are typically included on maps showing the states
and provinces of their respective countries.‡

When numerically integrating Eq. 3, the choice of time steps
determines how accurately we estimate r(1). One possible strat-
egy for achieving a highly accurate cartogram is to take a large
number of small steps. After some experiments, we have decided
to use a different strategy that achieves quicker run times and
ultimately also comes arbitrarily close to a perfectly density-
equalizing map. We use only a moderate number of adaptive
time steps (≈100 in a typical run; the exact number is determined
at run time) during the initial integration. We expedite the con-
vergence by applying a Gaussian blur of moderate width to the
initial density before starting the integration. After one round of
integration, the areas do not yet perfectly match their targets. For
example, Washington, DC still needs to grow by a factor ≈50.
The key feature is to use the output of the first integration as
input to another round of integration, which then usually comes
closer to the objective areas. By repeating the integration suffi-
ciently often, we have in all test cases observed that we can reach
the objective areas with arbitrary precision. For the contiguous
48 states of the United States, we perform five iterations. After-
ward, even for the extreme case of Washington, DC, the smallest
region in land area, the cartogram area differs by only 0.31%
from the objective area. For India we iterate the integration 12
times and for China 6 times. The maximum differences between
target and objective area are then 0.72% for the Andaman and
Nicobar Islands (AN in Fig. 5B) and 0.83% for Tibet (TAR in
Fig. 6B), respectively. These differences are certainly so small
that they cannot be detected by eye. We generally set a maximum
relative area error of <1%, defined as

relative area error =
target area− objective area

objective area
,

as the stopping criterion for the algorithm.
This level of accuracy is all the more remarkable when con-

sidering the speed of our implementation. On a Dell Precision
T7810 workstation with a 12-core Intel Xeon E5-2680V3 pro-
cessor and an Ubuntu 16.04.2 operating system, we need 1.5
s for the US Electoral College cartogram (Fig. 3B), 2.6 s for
the India GDP cartogram (Fig. 5B), and 2.7 s for the China
GDP cartogram (Fig. 6B). Compared with the diffusion algo-
rithm, which needs 59.5 s to generate the US cartogram (Fig.
3A) with equal accuracy, this is a speedup by roughly a fac-
tor 40. Among other all-coordinates cartogram algorithms, only
the rubber-sheet method Carto3F (22) can achieve comparable
speed, but not for all types of input. For a cartogram of Chi-

‡We exclude the island territory of Lakshadweep from the maps of India because it is so
small that it is neither visible on an equal-area map nor on a GDP cartogram.

nese provinces, Carto3F needs 8 min of computer time. Our fast
flow-based method achieves smaller area errors in a fraction of
this time.

Benchmarking with Data for Mortality in Kensington and
Chelsea (London) 2011–2014
As noted above, cartogram algorithms that generate the com-
plete density-equalizing projection T are particularly advanta-
geous when displaying demographic data that are individual
points on a map. We now demonstrate how our algorithm can be
applied to such input and how we can use it to compare different
statistical models. The data also serve as another benchmark for
the speed of our method. Our example involves the locations of
all 3,197 death cases in the London borough of Kensington and
Chelsea between the years 2011 and 2014. The database from the
United Kingdom’s Office for National Statistics (ONS) (30) lists
the number of deaths in each of London’s 4,835 Lower Layer
Super Output Areas (LSOAs). A total of 103 LSOAs are located
in Kensington and Chelsea. We show the density of death cases
in this borough on an equal-area map in Fig. 4A. Each death cor-
responds to one point on the map placed at a random position
inside the LSOA where it occurred.

The point pattern on the equal-area map is spatially hetero-
geneous with two bands of high density, one in the south and
another in the north, separated by a band of lower density in the
middle. However, it remains unclear from the equal-area map
whether the differences in the spatial distribution of death cases
are caused by differences in per-capita mortality or by a hetero-
geneous population density. We can distinguish between these
two effects by projecting the death cases to a cartogram where
each LSOA area is proportional to the number of inhabitants
(Fig. 4B).

The most striking feature on this cartogram is the high per-
capita mortality in the southeast corner of the borough. The rea-
son for the high number of death cases in the LSOA with the
ONS code “Kensington and Chelsea 018C” is a large proportion
of elderly, most likely because of the St. Wilfrid’s nursing home
located in this LSOA. Because mortality increases markedly as a
person becomes elderly, total population is too crude a measure
to predict death rates. We now show how to improve the predic-
tion by using each LSOA’s age-adjusted mortality as the basis of
a cartogram instead of the simple per-capita mortality displayed
in Fig. 4B.

Data from the ONS (30, 31) include population size and death
cases in the following age groups for each LSOA: 0 y old, 1–4 y
old, 5–9 y old, ..., 85–89 y old, and≥90 y old, with each age group
divided into men and women. For each one of these 40 demo-
graphic subgroups, we can compute its total mortality in west-
ern central London (i.e., Kensington and Chelsea as well as the
adjacent boroughs Brent, Westminster, Wandsworth, and Ham-
mersmith and Fulham). We denote by pj the size of the popu-
lation that lives in this part of London and belongs, because of
its gender and age, to the demographic group j . If there were dj
deaths in this subpopulation, its region-wide per-capita mortality
is mj = dj/pj . The expected number of deaths in the i th LSOA
is thus ei =

∑
j pijmj , where pij is the population that lives in

LSOA i and belongs to the demographic group j . This approach
is known in the public health literature as age adjustment (32).
Unlike the unadjusted population size

∑
j pij , the expected value

ei makes a fair comparison between, for example, an LSOA
mostly inhabited by a younger population and an LSOA with a
large proportion of elderly inhabitants such as 018C.

In Fig. 4C, we show a cartogram with LSOA areas propor-
tional to ei . On this cartogram, the density of points in 018C is
near the average in the borough, visualizing that age is indeed
an important predictor for local death rates. Across the borough,
however, differences between death rates still remain despite age
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Table 1. Measures of distortion applied to the diffusion algorithm and the flow-based algorithm using Eqs. 4–7

Map Algorithm ea e∞ ẽa ẽ∞ α δ θ run time, s

United States Diffusion 0.278 6.85 0.273 3.01 2.01 17.1 0.0388 59.5
Fast flow-based 0.285 7.06 0.280 3.02 2.04 17.4 0.0435 1.5

India Diffusion 0.190 3.95 0.185 2.59 2.45 39.0 0.0281 113.0
Fast flow-based 0.191 3.18 0.187 2.34 2.40 39.7 0.0290 2.6

Mainland China and Taiwan Diffusion 0.590 5.07 0.553 2.83 2.33 18.6 0.0849 178.5
Fast flow-based 0.570 8.16 0.530 3.07 2.19 20.6 0.103 2.7

Kensington and Chelsea, age adjusted Diffusion 0.161 6.86 0.154 3.01 2.03 22.1 0.0589 99.5
Fast flow-based 0.163 7.08 0.156 3.03 2.20 24.1 0.0615 1.9

Smaller values are highlighted in boldface type.

adjustment. We can quantify the deviation from spatial homo-
geneity, for example, with the Hopkins statistic H (33), which
is a number between 0 and 1. If a point pattern is caused by a
homogeneous Poisson process (i.e., deaths are independent and
equally likely everywhere), then the expected value of H equals
0.5. The more clustered the points are, the larger H is. We find
H = 0.524 (95% confidence interval [0.518, 0.530]) in Fig. 4C,
indicating that the data are inconsistent with a homogeneous
Poisson process.

We show a kernel density estimate of the underlying proba-
bility distribution in Fig. 4D. We use a bivariate normal kernel
with a bandwidth chosen according to ref. 34. Fig. 4D reveals
a minimum in the age-adjusted death rate in the east of the
borough and a maximum in the north. Previous studies have
argued that indicators of health (e.g., life expectancy) in different
parts of London are positively correlated to average household
income (35). A choropleth map of deprivation in Kensington and
Chelsea (36) does indeed follow a strikingly similar regional pat-
tern to that of the death rate in Fig. 4D.

The flow-based method of Eqs. 4–7 calculates the cartograms
in Fig. 4 B and C in 1.6 s and 1.9 s, respectively. To avoid bound-
ary effects in Fig. 4D, we also include data for Kensington and
Chelsea’s neighboring boroughs when computing the cartograms
and the kernel density estimate. The equivalent calculations with
the diffusion-based method take 69.9 s and 99.5 s, respectively.

Measures of Distortion
Our algorithm not only is accurate and fast, but also generates
cartograms whose visual appearance is on par with those of pre-
vious methods. In Fig. 3 we directly compare the diffusion car-
togram of the United States (Fig. 3A) with the faster method
based on Eqs. 4–7 (Fig. 3B). The border between Illinois (IL)
and Indiana (IN) is straighter in Fig. 3A than in Fig. 3B and thus
more similar to the input map (Fig. 2A). On the other hand,
the border between New Mexico (NM) and Colorado (CO) is
straighter and Oklahoma’s (OK) panhandle less bent in Fig. 3B.
Overall, however, the differences between both cartograms are
only subtle.

Because visual appearance is not a fully satisfactory criterion,
we now turn to quantitative measures of distortion. One way to
compare the local distortion of different projections is by analyz-
ing the Tissot indicatrix that is constructed as follows. Suppose
we draw an infinitesimal circle at the coordinates (x , y) on the
input map. Locally, the effect of the projection T is to deform the
circle into an ellipse, called the Tissot indicatrix of T at (x , y). In
SI Appendix, Fig. S2, we show concrete examples of Tissot indi-
catrices for our benchmarking examples. We denote the semi-
major and -minor axes of the Tissot indicatrix by a(x , y) and
b(x , y), respectively. Two measures of the local distortion error
are (37)

e(x , y) = ln

(
a(x , y)

b(x , y)

)

and (38)

ẽ(x , y) = 2 arcsin
(
a(x , y)− b(x , y)

a(x , y) + b(x , y)

)
.

For a conformal (i.e., angle-preserving) map, we would have
a = b for all (x , y) and thus e = ẽ = 0. This scenario would be
ideal, but, as we review in SI Appendix, section 3, except in a few
special cases there cannot be a conformal density-equalizing pro-
jection (20). As a global measure for the deviation of a cartogram
from conformality, we can use, for example, either the spatially
averaged or the maximum local distortion error,

ea =
1

|Ω|

∫
Ω

e(x , y)dx dy , e∞= sup
(x ,y)∈Ω

e(x , y),

where Ω is the spatial domain of the input map. In our compari-
son of the diffusion and fast flow-based algorithms in Table 1, we
choose Ω to be the rectangular Lx ×Ly bounding box that con-
tains the area to be mapped as described above. By replacing e
with ẽ , we obtain similar measures ẽa and ẽ∞.

When computing e and ẽ , we need to know T at each coor-
dinate (x , y) so that these measures can be applied only to all-
coordinates cartograms. Measures that aim to quantify the dis-
tortions also for other types of cartograms must instead rely on
the polygons defining each region. In Table 1, we include three
such measures from ref. 39: the average aspect ratio α, the Ham-
ming distance δ, and the relative position error θ. We provide
details of their definition in SI Appendix, section 4. Briefly, the
aspect ratio of a region is the ratio of the larger to the smaller side
length of the bounding rectangle with minimum area, minimized
over all possible rotations with respect to the coordinate axes.
The Hamming distance between two polygons is the area lying
within exactly one of them (40). For the measurement in Table
1, we rescale each polygon on the input map and the correspond-
ing polygon on the cartogram so that they have equal areas. We
then calculate the minimum Hamming distance between these
two polygons by shifting one polygon with respect to the other.
We define δ as the sum of the minimum Hamming distances,
where the summation is over all corresponding pairs of polygons.
For the relative position error, we compute the angle between
the line connecting the centroids of two polygons on the input
map and the line that connects the centroids of the correspond-
ing two polygons on the cartogram. We obtain θ by averaging
over all pairs of polygons (41).

Most measures listed in Table 1 exhibit only small relative dif-
ferences in the range of a few percent between the diffusion
and fast flow-based methods. Diffusion performs a little better
in the majority of examples and measures, but there are also
cases where the fast flow-based method produces a smaller error.
Considering the vastly different run times, the fast flow-based
method is the better solution as a general-purpose algorithm for
interactive applets.
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Conclusion
The scientific value of cartograms can go far beyond providing
mere entertainment, shock, or amusement. As “isodemographic
maps” they have been used for mapping diseases and mortal-
ity for several decades (42–44) to improve health services (45).
Arguably, the technical challenge of computing the map pro-
jection has so far prevented more widespread use. We accom-
pany this article with C code available at https://github.com/Flow-
Based-Cartograms/go cart to alleviate some of the challenge. The
code optionally produces the graticule of the inverse transforma-

tion so that features found on the cartogram can be identified in
the original domain. We reconstruct the original positions by first
approximating T as a piecewise linear function and then comput-
ing its inverse. The speed of the cartogram algorithm depends on
the number of processing units available to the user. If the cal-
culation runs on a multicore server, users will be able to take full
advantage of the parallelized code at no cost. We hope that in this
form the algorithm will be accessible to a wider audience.
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