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The establishment and spreading of biological populations depends crucially on population growth at

low densities. The Allee effect is a problem in those populations where the per capita growth rate at low

densities is reduced. We examine stochastic spatial models in which the reproduction rate changes across a

gradient g so that the population undergoes a 2D-percolation transition. Without the Allee effect, the

transition is continuous and the width w of the hull scales as in conventional (i.e., uncorrelated) gradient

percolation, w / g�0:57. However, with a strong Allee effect the transition is first order and w / g�0:26.
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It is not just human relationships that obey the rule
‘‘two’s company, three’s a crowd.’’ Negative density de-
pendence, defined as a decrease of the per capita growth
rate with increasing population density, is common among
almost all species at high densities, where overcrowding
and the depletion of resources limit further growth. The
most common model for negative density dependence is
the logistic equation which assumes that the per capita
growth rate decreases linearly with the population size P,

1

P

dP

dt
¼ r

�
1� P

K

�
; (1)

where t is time, r is the intrinsic rate of increase, and K the
carrying capacity.

If r; K > 0, Eq. (1) is characterized by a negative density
dependence for all population sizes P. For some small
populations, however, a positive density dependence can
be observed. The latter is called a demographic Allee
effect, named after Warder Clyde Allee, who described it
first and supported the theory with examples from various
animal species from insects to mammals [1]. Small pop-
ulations can suffer from reduced growth rates for various
reasons. Frequently, a collective behavior (e.g., defense
against predators) becomes inefficient when the group is
small. Additionally, small populations are less efficient in
modifying the environment to their own benefit. For ex-
ample, plant individuals in aggregations can reduce frost or
desiccation, but only when the density in the clump is
sufficiently high [2]. To generalize density dependence,
Volterra proposed to replace the right-hand side of
Eq. (1) with a quadratic function of P [3],

1

P

dP

dt
¼ �Aþ BP� CP2; A; B; C > 0: (2)

If B2 � 4AC> 0, Eq. (2) has two stable fixed points,
unlike Eq. (1), which has only one, so that the long-term

behavior of Eq. (2) depends on the initial population

density. If P> ðB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
Þ=2C at t ¼ 0, the popu-

lation will approach a positive limit, whereas a smaller
initial population will become extinct. Several other for-
mulations of the Allee effect have been suggested in the
past decades, some including stochastic and spatial effects
[4,5] (see Chap. 3.5 in Ref. [6] for a review). They all have
in common that a strongly positive density dependence
accelerates the extinction of small populations.
The work described here is motivated by the question:

what are the consequences of an Allee effect on popula-
tions that live at a margin of a geographic range? Because
such populations usually have low densities, one can ex-
pect that it matters greatly for the success of establishment
and spreading if an Allee effect is present or not [5,7].
In this Letter, we investigate the situation near a geo-
graphic margin with two models where the density changes
across space from low to high values. We show that a
strong Allee effect makes the percolation transition at
the margin discontinuous, causing scaling behavior
different from previously studied types of gradient perco-
lation [8,9].
Our models are stochastic cellular automata whose local

rules correspond to discretized versions of Eqs. (1) or (2).
Both cellular automata operate on a two-dimensional hon-
eycomb lattice where the sites are either populated (A) or
vacant [;, Fig. 1(a)]. They can change their state by local
death and birth events. In both models, deaths are Poisson
processes.
(i) A ! ;: A populated site becomes vacant with rate 1.
In our first model, the rate, with which a vacant site

becomes populated by a local birth event, is exactly pro-
portional to the number of neighbors.
(ii) A ! 2A: A vacant site at position ðx; yÞ with k

populated adjacent sites becomes itself populated at the
rate bðxÞðk=6Þ.

PRL 106, 128103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 MARCH 2011

0031-9007=11=106(12)=128103(4) 128103-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.128103


The second model implements a local Allee effect by
requiring at least one pair of neighbors for successful
births. The rule A ! 2A is replaced with

(iii) 2A ! 3A: A vacant site at ðx; yÞ with k neighbors
[i.e., 12 kðk� 1Þ pairs of neighbors] becomes populated with

rate bðxÞ½12 kðk� 1Þ�=15.
The denominators 6 and 15 are the maximum number of

neighbors and the maximum number of neighbor pairs,
respectively. Sites are updated in a random order with the
rates stated above following the algorithm of Ref. [10].

The function bðxÞ can be interpreted as the rate with
which an individual in column x attempts to produce off-
spring on an adjacent site. A birth attempt succeeds only if
that site is vacant. In the case of 2A ! 3A, success further
depends on a second neighbor adjacent to the newly born
individual. If bðxÞ is a constant, then the first model is
equivalent to a contact process [11], and our second model
becomes a special case of ‘‘Schlögl’s second model’’ [12].

Our work differs from previous studies by assuming a
constant gradient g > 0 in the birth attempt rate, bðxÞ ¼
gx. Long-range gradients are important in ecology because

the environmental conditions can change gradually over
distances larger than the distance of dispersal within one
generation (e.g., along a hillside or across geographic
latitudes). We call A ! 2A a gradient contact process
(GCP) [10,13] and 2A ! 3A a gradient Allee process
(GAP). As long as the initial population density is suffi-
ciently high in regions with high birth rates, the population
density reaches a steady state independent of the initial
conditions (see supplement [14]).
Becauseg > 0, the steady-state density of populated sites

grows in both the GCP and the GAP as x, and hence b,
increases. At small x, the populated sites form small iso-
lated patches [light gray sites in Figs. 1(b) and 1(c)],
whereas at large xmost populated sites belong to one large
cluster (dark gray). The curve along which the largest
cluster touches the largest contiguous vacant area
(black curve) is the percolation hull [8,15]. If the populated
sites provide habitat or food for another species, the hull
marks the borderline between the connected and frag-
mented occurrence of this resource. An example is a tree
line across an altitudinal or latitudinal gradient. Births and
deaths cause the position and shape of the percolation hull
to fluctuate. The average position of the hull �x and the
characteristic width of the fluctuations w depend on g and
the model (GCP versus GAP). We compute �x and w as the
mean and the standard deviation of the distribution of x
coordinates along the hull during several independent runs.
In Fig. 1(b), the number of sites in the GCP’s largest

cluster increases gradually from left to right. The increase
is much more abrupt in the GAP [Fig. 1(c)] which gener-
ates fewer isolated clusters. This impression can be con-
firmed by looking at local densities in the transition region
near �x. Becausew is the relevant length scale in this region,
we investigate subsystems located between �x� w and
�xþ w [Fig. 2(a)]. We determine the cluster that has the
largest number of sites N within a 2w� 2w square. In both
models, the mean of N scales approximately as wDf with
Df ¼ 91=48, the fractal dimension of the incipient infinite

cluster in standard (i.e., uncorrelated, gradient-free, non-
directed) two-dimensional percolation [16] (see supple-
ment [14]). But the distribution of the N sites is different
in the two models.
To see this quantitatively, let us define the cluster density

� as N divided by the number of all (populated or vacant)
sites in the square. The distributions of �, aggregated over
independent runs of the GCP and the GAP, at different y
coordinates and at different times, are shown in Fig. 2(b).
The GCP distribution has a single peak at intermediate
densities whereas the GAP has two local maxima, one at
zero and another one at high density. In analogy to ther-
modynamics, where a bimodal probability distribution of
an order parameter is an indication of a first-order phase
transition [17], percolation in the GAP can be interpreted
as a first-order transition between two steady states of
either zero or of a positive density. Thus only a population
larger than a critical density is able to grow and, when this

(b) GCP (c) GAP

x∆x=
3/2

∆y
=1

xf

(a)

FIG. 1. (a) Sites in the spatial models are placed in the centers
of the hexagons in a honeycomb lattice. Gray cells represent
populated (A), white cells vacant (;) sites. In this example, the
focal site in the center has k ¼ 4 populated neighbors. If this site
is populated, it will die during a small time interval dt with
probability equal to dt. If, on the other hand, this site is vacant, it
will become populated with probability ðk=6ÞbðxfÞdt in the GCP
or ½12 kðk� 1Þ=15�bðxfÞdt in the GAP, where bðxfÞ is the local

birth attempt rate. (b) Typical snapshot of the GCP, (c) of the
GAP. Dark gray: The largest populated cluster. Light gray: All
other populated sites. Black curve: Percolation hull. The mean
hull position �x and the width of the fluctuations w are indicated
at the bottom.
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density is exceeded, the cluster size grows abruptly,
reminiscent of recent reports of ‘‘explosive percolation’’
[18], but generated here by a purely local rule.

In some explosive percolation models, cluster sizes were
recently shown to follow power-law distributions, casting
doubts on whether the transition is truly first order [19]. In
the GAP, by contrast, the cluster size distribution pcsðsÞ in
the stripe jx� �xj<w gives further evidence in support of
a first-order transition [Fig. 2(c)]. While the GCP distribu-
tion follows the scaling behavior expected for two-
dimensional percolation with a continuous transition

pcsðsÞ ¼ s��fcsðsg1=½�ð�þ1Þ�Þ, the GAP distribution does
not show indications of scaling. There is neither a power-
law decay nor a dependence on the gradient even for large
cluster sizes. Instead, consistent with a first-order transi-
tion, there is a characteristic size for the GAP clusters.

Another percolation property affected by the Allee ef-
fect is the scaling relation betweenw and g (Fig. 3). For the
GCP, we find w / g�aGCP , aGCP ¼ 0:572ð3Þ (95% confi-
dence interval). The GAP width also follows a power law,
but with a smaller exponent aGAP ¼ 0:26ð1Þ. (The same
exponents are observed if the hull is replaced with the
accessible external perimeter [20]; see supplement [14].)

The exponent aGCP is in agreement with �=ð�þ 1Þ ¼ 4=7,
which was derived for uncorrelated percolation based on
the divergence of the correlation length [8]. There is no
analogous relation for aGAP because the correlation length
is finite at a first-order transition. The result that w, never-
theless, scales with g in the GAP is surprising, considering
that scaling in stochastic gradient models has so far always
been linked to divergent correlation lengths [9].
Although the spatial width of the hull increases with

decreasing g, the transition zone becomes, in terms of the
birth rate b, more confined. This becomes clear by plotting
plcðbÞ, the probability that a site with birth rate b belongs to
the largest cluster (Fig. 4). In both models, plcðbÞ ap-
proaches a limiting function as g ! 0þ with a sharp in-
crease at the percolation thresholds bp;GCP ¼ 2:260ð1Þ
and bp;GAP ¼ 7:7340ð3Þ. For finite g, plcðbÞ obeys the

finite-size scaling plcðb; gÞ ¼ gcflcðjb� bpjga�1Þ, where
a is the hull width exponent (aGCP or aGAP) and flc is a
model-dependent scaling function. In the GCP, we expect
c ¼ �=ð�þ 1Þ ¼ 5=84. For the GAP, however, the first-
order transition demands that plc has a discontinuity in the
limit g ! 0þ and therefore cGAP ¼ 0. The insets of Fig. 4
show a remarkable data collapse for the anticipated
exponents.
Why is percolation in the GAP unconventional? Let us

denote by nðb; tÞ the probability that a site with birth
attempt rate b is populated at time t. The mean-field
equations for n to lowest order in g are

GCP :
@n

@t
¼ �nþ bð1� nÞnþ g2

4
bð1� nÞ @

2n

@b2
; (3)

GAP:
@n

@t
¼ �nþ bð1� nÞn2 þ g2

10
bð1� nÞ

�
�
5n

@2n

@b2
�

�
@n

@b

�
2
�
; (4)

where bðxÞ ¼ gx (see supplement for the derivation and
numerical solutions [14]). If g ¼ 0, Eq. (3) turns into the
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FIG. 2 (color online). (a) To distinguish between a continuous
and a first-order transition, we investigate squares of dimension
2w� 2w centered at �x. We measure the fraction of sites � that
belong to the cluster covering the largest area within the square.
(Typically, though not necessarily, this is the largest cluster on
the entire lattice, shown in dark gray). (b) From data of several
independent runs, we obtain the probability distribution for �,
represented as a histogram. We show data for g ¼ 5� 10�5. The
smaller the gradient, the more weight is concentrated in the two
peaks of the GAP distribution. (c) The distribution of cluster
sizes s in the stripe jx� �xj<w. We include clusters which are at
least partially in this stripe, but exclude the system’s largest
cluster. The dashed line / s�� is the tangent to the GCP
distribution. The inset shows the data collapse for the GCP.
The exponents are those of standard 2D percolation: � ¼ 187

91 ,

� ¼ 36
91 , � ¼ 4

3 [16].
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FIG. 3 (color online). The hull width w as a function of the
gradient g. The lines are least-squares fits to the data. Error bars
are smaller than the symbol sizes.
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logistic equation (1) with r ¼ b� 1, P ¼ bKn=r, and
Eq. (4) becomes Eq. (2) with P ¼ n, A ¼ 1, B ¼ C ¼ b.
For g ! 0þ, Eq. (3) has a continuous stationary solution:
n ¼ maxð0; 1� 1=bÞ. In Eq. (4), on the other hand, n
develops a discontinuity in the limit g ! 0þ where it
suddenly jumps from zero to n � 0:77. If the percolation
threshold is at a probability np ¼ 0:5, as in uncorrelated

honeycomb lattices [16], the GCP hull is at a position
where nðbÞ varies smoothly. The GAP hull, by contrast,
lies at a position where nðbÞ changes abruptly.

In summary, the GCP and the GAP behave fundamen-
tally differently near the margin of the populated range.
The GCP, a model without any Allee effect, possesses the
same characteristic features as previously reported for
uncorrelated gradient percolation [10]. The Allee effect
in the GAP changes the situation drastically: the percola-
tion transition is first order and the hull width diverges
more slowly for g ! 0þ.
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