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Agent-based neutral competition in two-community networks
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Competition between alternative states is an essential process in social and biological networks. Neutral
competition can be represented by an unbiased random drift process in which the states of vertices (e.g., opinions,
genotypes, or species) in a network are updated by repeatedly selecting two connected vertices. One of these
vertices copies the state of the selected neighbor. Such updates are repeated until all vertices are in the same
“consensus” state. There is no unique rule for selecting the vertex pair to be updated. Real-world processes
comprise three limiting factors that can influence the selected edge and the direction of spread: (1) the rate at
which a vertex sends a state to its neighbors, (2) the rate at which a state is received by a neighbor, and (3) the
rate at which a state can be exchanged through a connecting edge. We investigate how these three limitations
influence neutral competition in networks with two communities generated by a stochastic block model. By using
Monte Carlo simulations, we show how the community structure and update rule determine the states’ success
probabilities and the time until a consensus is reached. We present a heterogeneous mean-field theory that agrees
well with the Monte Carlo simulations. The effectiveness of the heterogeneous mean-field theory implies that
quantitative predictions about the consensus are possible even if empirical data (e.g., from ecological fieldwork
or observations of social interactions) do not allow a complete reconstruction of all edges in the network.
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I. INTRODUCTION

Numerous social and biological phenomena in complex
networks can be modeled as dynamic processes in which
vertices update their states by copying their neighbors. In
social networks, individuals (represented by vertices) tend to
adopt the opinions, beliefs, or cultural traits of their peers
with whom they are connected [1,2]. In biological settings,
the vertices can represent individuals or places inhabited by
individuals. For example, in an ecological habitat network,
patches (vertices) are colonized by species from connected
patches [3–7]. Unbiased random drift processes are bench-
mark models in which the probability of a copying event is
independent of the state of the vertex [8,9]. In a genetic model,
this feature can be interpreted as ascribing equal fitness to all
states. In an ecological context, a random drift process as-
sumes that none of the species is a stronger competitor within
a habitat patch (a vertex) than any other. A state can only
gain more influence by occupying more influential positions
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in the network. Although a random drift process is a highly
simplified representation of real-world dynamics, it can serve
as a null model for investigating positional influence.

The voter model is a paradigmatic example of a random
drift process [10,11]. It aims to model the spread of opinions
in a social network. The voter model also has applications
in other contexts (e.g., spread of languages [12], competition
between species [13], and genetic drifts [14]). In the simplest
versions of the voter model, each vertex is in one of two
possible states: “red” or “blue.” Vertices repeatedly update
their states by copying the state of a random neighbor. Three
conditions must be met for a successful copying event. (i) A
vertex must send information about its state. (ii) A connected
vertex must be ready to update its state. (iii) A connection
between the sender and recipient must be active. In an ecolog-
ical setting, the equivalent conditions are as follows: (i) The
species must produce colonizers (e.g., seeds) in the sender
patch. (ii) These colonizers must be able to establish their
lives in the recipient patch. (iii) The colonizers must find a
way from the sender into the recipient patch (e.g., through
a suitable ecological corridor). We investigated random drift
processes in which one of the three conditions is the limiting
factor in the spread of the states.

(i) In a sender-limited process (SLP), all edges are perma-
nently open, and the recipient immediately updates its state.
However, vertices attempt to spread their states across ran-
domly selected edges at a finite rate only.

(ii) In a recipient-limited process (RLP), all vertices con-
stantly attempt to spread their states, and all edges are
permanently open. However, vertices only copy the states of
their neighbors at a finite rate.
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(iii) In a connection-limited process (CLP), vertices at-
tempt to colonize their neighbors at an infinite rate, and they
update their state immediately after receiving a copy of a
neighbor. However, the edges are only open for transmission
at a finite rate.

We assume that the system is homogeneous in the sense
that all vertices are equally active senders, they are all equally
active recipients, and all edges are open for transmission with
equal rates. Under these assumptions, the conventional voter
model corresponds to the RLP. Previous studies have termed
the SLP as a “reverse voter model” [15] or an “invasion pro-
cess” [16]. Others have referred to the SLP as a “birth-death
process,” the RLP as a “death-birth process,” and the CLP as
“link dynamics” [17].

Early research on random drift models assumed that the
network was either a complete graph [18] or a regular lattice
[10]. In these networks, as well as in any other regular network
(i.e., a network in which each vertex has the same number of
neighbors), no difference exists between the SLP, RLP, and
CLP; every vertex is equally likely to be a sender and equally
likely to be a recipient. In irregular networks, this symme-
try is broken. The resulting differences between the update
rules have been discussed in the context of the voter model
[15,16], evolutionary dynamics [14], and game-theoretic set-
tings [19–21].

The purpose of this study is to demonstrate the differences
between the SLP, RLP, and CLP in networks with a com-
munity structure. A community is conventionally defined as
a subnetwork that contains a significantly higher number of
edges than predicted by a null model (e.g., an Erdős-Rényi
graph with the same mean degree as the investigated network).
In this study, we define communities more broadly as subnet-
works with different (i.e., higher or lower) densities than the
corresponding Erdős-Rényi graph; thus, we also cover core-
periphery structures and disassortative topologies under the
umbrella of community-structured networks. We generated a
community structure using a stochastic block model, which
is a standard method for generating communities in networks
[22,23]. By considering networks with two communities, we
demonstrate that, depending on the network structure and
the factor that limits the transmission of a state, an initial
minority state can become the more probable winner in the
competition. We also compare the amount of time required to
reach a consensus (i.e., a condition in which all vertices are in
the same state) in the three processes (SLP, RLP, and CLP).

In Sec. II, we briefly review the relevant literature on
random drift processes in modular networks. In Sec. III,
we define our notation for the stochastic block model and
specify how we implemented the random drift processes as
agent-based models. We present the heterogeneous mean-field
theory of two-community random drift processes in Sec. IV.
In Sec. V, we derive the probability with which one of the
states becomes a consensus. In Sec. VI, we compare the mean
consensus times in the SLP, RLP, and CLP. We conclude by
discussing the implications of our findings in Sec. VII.

II. BACKGROUND

Random drift models have a long history in mathemati-
cal biology, usually under the name “neutral models.” This

name indicates that competing partners are assumed to be
equally strong. Since the introduction of the neutral theory
of evolution [24], such neutral models have been inten-
sively applied in the field of population genetics. In this
context, the “colors” (red vs. blue or more colors) repre-
sent genotypes within a population (i.e., within a single
species). Another typical field of application is ecology [8], in
which the “colors” mark different species living together in a
community.

In both fields, neutral models are important references
for the study of competition between genotypes or species
(in genetics or ecology, respectively). The agents can repre-
sent individuals or places occupied by individuals belonging
to different species [25]. The earliest models typically used
mean-field approximations [18], assuming perfect mixing in
the whole population; nevertheless, early literature also high-
lighted the idea of considering the structure of interactions
between agents. For example, the classic model of Wright
[26] represents genetic drift in a population that is spatially
divided into subpopulations (demes), which inhabit discrete
habitat patches (“islands”). Members of the demes mostly
breed within themselves, except for a few migrants drawn
from the rest of the population. Numerous models later ex-
plicitly considered the interaction structure, representing it by
a network. These studies investigated the effect of the network
topology on the dynamics of competition between genotypes
or species (e.g., Refs. [14,19,27]). Many of these models
relaxed the assumption of neutrality (i.e., allowing unequal
competitive strengths), further extended the voter model by
including more than two “colors” (beyond red and blue), and
permitted new colors to enter the system (by mutation in the
genetic models and by speciation or immigration from an
external species pool in the ecological settings).

A large field of research, which aims at integrating local
(patch level) and regional species dynamics, is metacom-
munity ecology [3]. Metacommunity models usually relax
some of the aforementioned restrictive assumptions and as-
sume interaction rules between species that are more complex
than those in the voter model. Nevertheless, we believe
that the voter model, because of its simplicity, is an im-
portant baseline model for the dynamics of competition in
metacommunities.

In the context of opinion formation, vertices typically rep-
resent individuals, and the network structure reflects social
relations (e.g., acquaintances). Some previous studies have
investigated the dynamics of the voter model on a special type
of modular network structure: two-clique networks (i.e., net-
works in which both communities are complete subgraphs).
Sood et al. [16] found that, if the number of edges between
the cliques is small, then the opinion dynamics in the two
cliques can be approximated by two independent diffusion
processes. Conversely, when the interclique connectivity is
high, the average opinions in the two cliques quickly become
equal and remain coupled until a consensus is reached. Later
studies showed how this finding can be explained by the
theory of coalescing random walks [28] and a heterogeneous
mean-field theory [29]. Recent work has also investigated
how the dynamics of the two-clique voter model change if
the cliques are influenced by opposing external news sources
[30,31].
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Only a few previous studies have analyzed the voter model
on general two-community networks in which the communi-
ties are not cliques. These studies focused on the question of
suitable representations of the underlying Markov chain [32].
Numerical results for the consensus time [33] and the success
probability of a single mutant [34] have also been presented.
Our study goes beyond previous research by examining the
process from various initial conditions and under three kinds
of limitations: when the interaction rates between adjacent
vertices are limited by the ability of vertices to send (SLP
model) or receive information (RLP) or by the capacity to
transmit information across an edge (CLP).

III. MODEL

We generated networks using the stochastic block model,
which is a canonical model for modular networks that can
generate various community structures [22]. In the special
case of a two-community network, the stochastic block model
takes the following data as input. First, we partition N vertices
into two disjoint communities, C1 and C2. The number of
vertices in Ci is denoted as Ni. Between any two vertices in
the same community Ci, a link exists with probability Pi. The
number of edges between C1 and C2, randomly selected from
all N1N2 pairs of vertices, is denoted by X . In our parametriza-
tion of the stochastic block model, X is a fixed deterministic
value; thus, X � 1 guarantees that there are connections be-
tween the communities. We discarded any networks in which
communities were internally disconnected to ensure that a
consensus could be reached.

Given a network with two communities generated by the
stochastic block model, we assign an initial state (red or blue)
to each vertex. We assume that C1 is initially entirely red, and
C2 is entirely blue. We refer to this state as a “polarized”
initial condition. This situation can occur, for instance, if
the communities were previously unconnected, and each of
them developed an internal consensus before new intercom-
munity edges enabled interactions between communities. (In
Appendix A, we show numerical results for a nonpolarized
initial condition.) We then update the states according to either
the SLP, RLP, or CLP. In the SLP, we randomly choose a
“sender” from all vertices in the network. The sender then
exports its state to a randomly chosen neighbor. In the RLP,
the direction of the exchange is inverted: we pick a random
“recipient” that adopts the state of a randomly chosen neigh-
bor. In the CLP, we first chose a random edge. A randomly
chosen vertex on the edge adopts the state of the other vertex
on the same edge. In Fig. 1, we illustrate the differences
between the three processes.

In all three investigated processes, we modeled random
drift dynamics as a continuous-time Markov chain. In other
words, the time intervals between consecutive updates are
independent and identically distributed exponential random
numbers. We set the time unit so that the mean update rate per
vertex is 1 in all investigated processes (SLP, RLP, and CLP).
Updates were repeated until the vertices reached a consensus.
Because we restricted our study to finite, connected networks,
the occurrence of a consensus in finite time was guaranteed
[35].

a

b

c

Community 1 Community 2

FIG. 1. Illustrative network with two communities (circles vs.
squares). Each vertex has one of two possible states: red (closed
symbols) or blue (open symbols). In the SLP and RLP, we pick a
random vertex (e.g., the blue vertex a) and a neighbor of that vertex.
If the chosen neighbor is the blue vertex b, then a maintains its
current state. If, instead, the chosen neighbor is the red vertex c, then
either c becomes blue (SLP) or a becomes red (RLP). In the CLP,
we pick a random edge instead of a random vertex. If the selected
edge is (a, c), then either a becomes red (with probability 1/2) or c
becomes blue (also with probability 1/2).

IV. HETEROGENEOUS MEAN-FIELD THEORY

A continuous-time Markov chain is fully specified by the
transition rates Q(x, y) at which the process moves from any
state x to a new state y �= x. If we wanted to represent the state
of every vertex in a network with N vertices faithfully, then
we would have to distinguish between 2N different states of
the network. All Monte Carlo simulations presented in this
study are based on this exact agent-based paradigm. We com-
plemented the simulations with a heterogeneous mean-field
theory, in which we denote the state of the system as (ρ1, ρ2)
if a fraction ρ1 of vertices in C1 and a fraction ρ2 of vertices
in C2 are red.

We can split the degree ki of a vertex in Ci into two
contributions: ki = ki,int + ki,ext, where ki,int is the number of
neighbors in the same community, and ki,ext is the number of
neighbors in the opposite community. In the stochastic block
model, ki,int is a random variable with a binomial distribution
B(Ni − 1, Pi ) for vertices in Ci. We made a heterogeneous
mean-field approximation by replacing ki,int with the mean
of the distribution, ki,int ≈ (Ni − 1)Pi. Similarly, we replaced
ki,ext with X/Ni.

With these approximations, we can derive all the transition
rates. For example, let us consider the transition from (ρ1, ρ2)
to (ρ1 + 1/N1, ρ2). The transition occurs when a vertex in C1

changes from blue to red. In the SLP, the transition probability
can be written as a sum of two probabilities �1 + �2, where
�i is the probability that the sender is a red agent in Ci who
sends its state to a blue agent in C1. The first probability takes
the following form:

�1(ρ1) = N1ρ1

N

k1,int N1(1 − ρ1)

k1(N1 − 1)
, (1)

where the first factor on the right-hand side, N1ρ1/N , is the
probability of choosing a red sender in C1. The second factor is
the expected proportion of blue neighbors in C1, conditioned
on the selection of a red agent in C1 as the sender. The second
probability follows analogously:

�2(ρ1, ρ2) = N2ρ2

N

k2,ext(1 − ρ1)

k2
. (2)
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TABLE I. Transition rates from the state (ρ1, ρ2) in the investigated random drift processes. In these expressions, Ei is the mean number
of edges in Ci [Eq. (4)]. We only list transitions with positive rates.

Transition rate matrix element Q[(ρ1, ρ2), (y, z)]

New state (y, z) Sender-limited Recipient-limited Connection-limited

(
ρ1 + 1

N1
, ρ2

)
(1 − ρ1)

( N3
1 P1ρ1

2E1+X + N2Xρ2
2E2+X

)
N1(1 − ρ1)

N2
1 P1ρ1 + Xρ2

2E1 + X N (1 − ρ1)
N2

1 P1ρ1+Xρ2

2(E1+E2+X )(
ρ1 − 1

N1
, ρ2

)
ρ1

[ N3
1 P1(1−ρ1 )
2E1+X + N2X (1−ρ2 )

2E2+X

]
N1ρ1

N2
1 P1(1−ρ1 ) + X (1−ρ2 )

2E1 + X Nρ1
N2

1 P1(1−ρ1 )+X (1−ρ2 )
2(E1+E2+X )(

ρ1, ρ2 + 1
N2

)
(1 − ρ2)

( N1Xρ1
2E1+X + N3

2 P2ρ2

2E2+X

)
N2(1 − ρ2)

Xρ1 + N2
2 P2ρ2

2E2 + X N (1 − ρ2)
Xρ1+N2

2 P2ρ2

2(E1+E2+X )(
ρ1, ρ2 − 1

N2

)
ρ2

[ N1X (1−ρ1 )
2E1+X + N3

2 P2 (1−ρ2 )
2E2+X

]
N2ρ2

X (1−ρ1 ) + N2
2 P2(1−ρ2 )

2E2 + X Nρ2
X (1−ρ1 )+N2

2 P2(1−ρ2 )
2(E1+E2+X )

The transition rate is thus

Q

[
(ρ1, ρ2),

(
ρ1 + 1

N1
, ρ2

)]

= N[�1(ρ1) + �2(ρ1, ρ2)], (3)

where the factor N accounts for the fact that there are, on
average, N updates per unit time. After inserting Eqs. (1) and
(2) into Eq. (3), we obtain the result in the top left corner of
Table I, where we use the mean number of internal edges in
Ci,

Ei = 1
2 Ni(Ni − 1)Pi, (4)

as an auxiliary variable to shorten the expressions. Based on
similar arguments, we can calculate the other transition rates
listed in Table I. We adopted the convention that the diagonal
elements of the transition rate matrix satisfy

Q[(ρ1, ρ2), (ρ1, ρ2)] = −
∑
(y, z)

�= (ρ1, ρ2 )

Q[(ρ1, ρ2), (y, z)]. (5)

V. PROBABILITY OF A RED CONSENSUS

In this section, we calculate the probability R(ρ1, ρ2) of
reaching a red consensus from the initial state (ρ1, ρ2). The
choice of color is arbitrary; the labels “red” and “blue” are
interchangeable. R is the martingale that satisfies R(0, 0) = 0,
R(1, 1) = 1, and∑

y,z

Q[(ρ1, ρ2), (y, z)]R(y, z) = 0 (6)

for all (ρ1, ρ2) /∈ {(0, 0), (1, 1)}. The solution for the investi-
gated processes has the form

R(ρ1, ρ2) = r12ρ1 + r21ρ2

r12 + r21
(7)

with

ri j =
⎧⎨
⎩

N2
i (2Ej + X ) SLP,

2Ei + X RLP,
Ni CLP.

(8)

It is possible to verify Eq. (7) and Eq. (8) by insert-
ing them into Eq. (6) together with the expressions for
Q[(ρ1, ρ2), (y, z)] in Table I. We note that ri j for the SLP is
not equal to r ji in the RLP; thus, there is no symmetry between
the two processes.

Equation (8) shows that the probability of a red consensus
in the SLP and RLP depends on the number of edges within
and between communities. In the CLP, however, R is always
the initial fraction of red vertices in the entire network, regard-
less of the details of the community structure. Consequently,
the initial majority state is always the likely consensus state
in the CLP. In the SLP and RLP, the initial majority is not
necessarily the likely winner, as we can see from the following
example.

We assume a polarized initial state in which ρ1 = 1 and
ρ2 = 0. In general, if R(ρ1, ρ2) > 1/2, then the consensus
opinion is more likely to be red than blue. In the SLP, starting
from a polarized state, this situation occurs if

2E1 + X

N2
1

<
2E2 + X

N2
2

. (9)

The quantity in the numerator, 2Ei + X , is the number of end
points of the edges (also called “edge stubs”) in Ci. Equation
(9) implies that even if N1 < N2 (i.e., red is initially in the
minority), red is the likely final winner as long as the number
of stubs in the red community is sufficiently small. In Fig. 2,
we confirmed the predictions of Eqs. (7) and (8) using Monte
Carlo simulations for an illustrative set of parameters. In the
SLP, the probability of a minority takeover from a polarized
state decreases with X if the minority community contains
fewer edges than the majority [Fig. 2(a)]. However, even for
maximally interconnected communities (i.e., X = N1N2), the
minority can be the likely winner; for example, if N1 = 100,
E1 = 0, N2 = 150, and E2 = 11 175 (in which case C2 is a
clique), then Eq. (8) implies that red wins with a probabil-
ity of R = 0.525 despite initially having only 40% of the
votes. This mean-field approximation agrees well with the
Monte Carlo simulations (R = 0.526, 95% confidence interval
[0.519, 0.533]).

In the SLP, it is beneficial for the initial minority to have
as few edge stubs as possible because, under these conditions,
the minority is relatively rarely “infected” with the majority
state and can spread its own state with high probability. The
opposite is true for the RLP. If the RLP starts from (ρ1, ρ2) =
(1, 0), then R is the fraction of edge stubs that are located in
the red community C1. It follows that red is likely to win if
E1 > E2 [Fig. 2(b)]. It should be noted that this criterion does
not depend on X . If there are more edges between the commu-
nities, then the difference between the success probabilities of
the two states decreases. However, the likely winner in the
RLP is always the state that initially occupies the community
with more internal edges. Consequently, the likely winner can
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FIG. 2. Probability R of a red consensus as a function of the
number of intercommunity edges X for two illustrative parameter
sets. In all cases, the initial state is polarized: (ρ1, ρ2) = (1, 0). Point
symbols represent the means obtained from Monte Carlo simulations
(error bars: 95% confidence intervals). The curves are the theoretical
predictions from Eqs. (7) and (8). The background color (red vs.
blue) indicates the likely winner. The dotted line in panel (a) shows
the intercommunity connectivity for which the three processes have
identical heterogeneous mean-field theories. For the parameters in
panel (a), the smaller community C1 has fewer internal edges than
the larger community C2. In panel (b), C1 has more internal edges
than C2.

be the initial minority [e.g., red if N1 < N2 and E1 > E2, see
the RLP curve in Fig. 2(b)].

In general, the SLP, RLP, and CLP have different values of
R. An exception is the case in which the ratio of the number
of vertices in the two communities is equal to the ratio of the
edge stubs,

N1

N2
= 2E1 + X

2E2 + X
. (10)

In this case, it follows from Eqs. (7) and (8) that R equals
the initial fraction of red vertices in all three processes. An
intuitive way to understand this feature is to note that the
left-hand side of Eq. (10) describes the SLP’s (RLP’s) odds of
choosing a sender (recipient) in C1 vs. C2 during one update.
The right-hand side represents the odds of choosing the SLP’s
recipient (RLP’s sender) from the vertices in C1 vs. C2 in
the heterogeneous mean-field approximation. In the CLP, the

right-hand side is equal to the odds of being a sender and the
odds of being a recipient. If Eq. (10) is satisfied, then all odds
mentioned above are equal; thus, the processes are identical
under the heterogeneous mean-field assumption. In Fig. 2(a),
we confirm this prediction with Monte Carlo simulations for
an illustrative set of parameters: R is the same for the SLP,
RLP, and CLP if X has the special value

Xintersect = N1N2[(N2 − 1)P2 − (N1 − 1)P1]

N2 − N1
. (11)

If Eq. (11) formally predicts Xintersect < 0 [e.g., for the param-
eters chosen in Fig. 2(b)], then no intersection exists.

VI. MEAN CONSENSUS TIME

The transition rates listed in Table I determine the mean
time T (ρ1, ρ2) until a consensus is reached from the initial
state (ρ1, ρ2). The equations that determine T are T (0, 0) =
T (1, 1) = 0 and

∑
y,z

Q[(ρ1, ρ2), (y, z)] T (y, z) = −1 (12)

for all (ρ1, ρ2) /∈ {(0, 0), (1, 1)}. When we insert the transition
rates from Table I and Eq. (5) into Eq. (12), we can obtain
recurrence relations for the values of T . Using a diffusion
approximation [36], we can convert the recurrence relations
into the more familiar form of a partial differential equation.
That is, we assume N1, N2 � 1 and take the continuum limit
of Eq. (12). For the SLP, this procedure leads to the following
partial differential equation:

[
N1P1 ρ1(1 − ρ1)

2E1 + X
+ N2X (ρ1 + ρ2 − 2ρ1ρ2)

2N2
1 (2E2 + X )

]
∂2T

∂ρ2
1

+
[

N2P2 ρ2(1 − ρ2)

2E2 + X
+ N1X (ρ1 + ρ2 − 2ρ1ρ2)

2N2
2 (2E1 + X )

]
∂2T

∂ρ2
2

+ N2X (ρ2 − ρ1)

N1(2E2 + X )

∂T

∂ρ1
+ N1X (ρ1 − ρ2)

N2(2E1 + X )

∂T

∂ρ2

= −1. (13)

We now assume that the communities are so sparsely con-
nected to each other that X � min(N1, N2). We can then drop
all terms from Eq. (13) that are O(N−2

1 ) or O(N−2
2 ),

ρ1(1 − ρ1)

N1

∂2T

∂ρ2
1

+ ρ2(1 − ρ2)

N2

∂2T

∂ρ2
2

+ X (ρ2 − ρ1)

N1N2P2

∂T

∂ρ1
+ X (ρ1 − ρ2)

N1N2P1

∂T

∂ρ2

= −1. (14)

For the RLP and CLP, we obtain similar second-order partial
differential equations (see Appendix B).

We are not aware of a closed-form solution of Eq. (14)
or the corresponding equations for the RLP and CLP. How-
ever, we can obtain a good approximation of T using a
two-dimensional power series. We call this approximation
Tsparse to indicate that this approximation is valid only if the
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communities are sparsely connected to each other,

Tsparse(ρ1, ρ2) =
2∑

i=0

2∑
j=0

ci j

(
ρ1 − 1

2

)i(
ρ2 − 1

2

) j

. (15)

We expand the right-hand side only up to quadratic terms
because this approximation is sufficiently accurate if X
is small. The value of T remains unchanged if we swap
the labels of the states (i.e., red and blue); thus, T must
satisfy T (ρ1, ρ2) = T (1 − ρ1, 1 − ρ2). Consequently, the co-
efficients ci j in Eq. (15) must be zero if either i is odd and
j is even, or vice versa. The remaining coefficients can be
determined using Eq. (14) and the boundary conditions. In
Appendix B, we show how to cast the conditions on the coef-
ficients into a system of linear equations for the five unknowns
c00, c02, c11, c20, and c22. From the leading-order behavior of
ci j , we can infer the consensus time for the polarized initial
conditions in the limit X

min(N1,N2 ) → 0,

Tsparse(1, 0) = 1

X

⎧⎪⎪⎨
⎪⎪⎩

N1N2P1P2
P1+P2

SLP,
2E1E2
E1+E2

RLP,
2N1N2(E1+E2 )

N2 CLP.

(16)

The dashed lines in Fig. 3 indicate these limits.
We can deduce from Eq. (16) that the mean consensus

time in the SLP for a small X is always shorter than in the
CLP. The mean consensus time for the RLP can range from
being shorter than for the SLP (if the community with more
vertices has a higher average within-community degree) to
being longer than for the CLP (if P1/P2 is between N2/N1 and
N3

2 /N3
1 ). The two illustrative parameter sets shown in Fig. 3

exhibit both cases.
The points in Fig. 3 indicate the results from the Monte

Carlo simulations. The curves in Fig. 3 are numerical solu-
tions of the diffusion approximations for the SLP, RLP, and
CLP, calculated using the method described in Appendix C.
As X increases, the leading-order approximation in Eq. (16)
becomes inaccurate, and the rankings of the processes in terms
of T change. However, the agreement with the heterogeneous
mean-field theory (curves in Fig. 3) is excellent. For the spe-
cial intercommunity connectivity Xintersect, derived in Eq. (11),
the mean consensus times for all processes are equal. Besides
this special case, there are no simple rules that govern which
process is fastest or slowest for a given X .

While T is a monotonically decreasing function of X for
the CLP, there can be local minima and maxima for the SLP
and RLP. Thus, it is possible to increase the mean consensus
time by increasing the intercommunity connectivity. At first
glance, this effect is counterintuitive because one might expect
that more intercommunity edges, which necessarily speed up
communication between the cliques, would always lead, on
average, to a faster consensus. The resolution to this apparent
paradox lies in the fact that a larger X can give the initial
minority state more options to displace the majority, which
can slow down consensus formation. For the special case
of the RLP on two cliques, this counterintuitive effect has
already been observed by Gastner and Ishida [29].

So far, we have focused on polarized initial states. In
Appendix A, we present results for a nonpolarized initial state
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FIG. 3. Mean consensus time T as a function of the number of
intercommunity edges X for two illustrative parameter sets. In all
cases, the initial state is polarized: (ρ1, ρ2) = (1, 0). Point symbols
represent Monte Carlo simulations. Error bars are invisible because
the 95% confidence intervals are smaller than the symbol sizes. The
curves represent numerical solutions of the diffusion approxima-
tion [Eqs. (13) and (B1)], obtained using the method described in
Appendix C. The dashed lines show the approximations of Eq. (16)
for X � min(N1, N2). The dotted line in panel (a) shows the inter-
community connectivity for which the three processes have identical
heterogeneous mean-field theories [Eq. (11)].

with ρ1 = ρ2 = 1/2. As for the polarized case, we found that
T is a monotonically decreasing function of X for the CLP but
not for the SLP and RLP (Fig. 4). If X is small, then we also
observed the same rankings of the processes in terms of T . For
larger values of X , however, the rankings generally depend on
the initial state.

VII. DISCUSSION

We compared the effect of three limitations on spreading
in networks that had a specific community structure: each
network consisted of two subgraphs (communities) with ar-
bitrary sizes and connected by X edges. The parameter X
varied from 1, representing a single “bottleneck” transmission
channel (or ecological corridor) between the communities, up
to X = N1N2, in which case every possible intercommunity
connection was present.
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FIG. 4. Mean consensus time T as a function of the number of
intercommunity edges X for a nonpolarized initial state: ρ1 = ρ2 =
0.5. The parameters N1, N2, P1, and P2 are the same as in Fig. 3.
Point symbols represent Monte Carlo simulations. The curves repre-
sent numerical solutions of the diffusion approximation [Eqs. (13)
and (B1)], obtained using the method described in Appendix C.
The dashed lines show the approximation of Eq. (B9) for X �
min(N1, N2).

A. Two communities divided by a barrier

The case of a small X is particularly interesting from
a biological viewpoint. In an ecological interpretation, the
model can be viewed as a two-species metacommunity model,
in which the vertices represent discrete habitat sites. A bar-
rier (e.g., mountain range or river) divides the area into two
regions. X represents the penetrability of the barrier. For ex-
ample, the barrier can be transgressed via ecological corridors.

Notably, when the barrier is hardly permeable (i.e., X is
very small), the time of winning is inversely related to X
[Eq. (16)]. For example, when the two sides of a barrier are
connected by twice as many corridors, the time of coexistence
is halved. This rule is important when we prefer coexistence,
to maintain species diversity, or when we wish to eliminate
one of the species. In real life, an additional corridor can
arise naturally (e.g., by a rock slide on a mountain) or can
be humanmade, either voluntarily or involuntarily. A typical
example of the latter is when building a road, railway line,
or canal promotes the spread of species (e.g., weeds) from
one geographic region into another. Our results suggest that

having two corridors instead of one does not considerably
influence which species wins (Fig. 2) but dramatically influ-
ences the time required for winning (Fig. 3).

Although our model contains serious simplifications, it
reflects two important, realistic features of real-life metacom-
munities. First, local dynamics are integrated into regional
dynamics [4,7]. Second, the opportunity for spreading of a
species depends on the initial position within the network
(see, for example, a review on river networks in Ref. [5]). The
capacity of the voter model for studying metacommunities has
only rarely been used (e.g., Ref. [37]); to our knowledge, our
model is the first to introduce a habitat structure that has the
topology of a modular network (local patches with a regional
barrier).

The effect of a modular habitat structure is similarly im-
portant in evolutionary models, in which the colors (red and
blue) represent genotypes within a species. Geographic barri-
ers have often been mentioned as major drivers of evolution,
including speciation [38]. Therefore, studying the penetrabil-
ity of barriers, compared to spreading within each side, is
of primary importance. We propose that network theory can
provide considerable help in this regard.

Our model is also applicable to social networks with ex-
ogenous community structures. Barriers in social networks
can be along religious divisions (e.g., Catholics vs. Protestants
in Northern Ireland), language barriers (e.g., between Dutch
and French speakers in Belgium), or ethnic conflicts (e.g.,
between Greek and Turkish Cypriots). The likelihood of inter-
community links can be increased, for example, by working in
the same place, visiting common places of entertainment, or
living in the same neighborhood. The present results suggest
that, when the number of links is originally low, adding a
few new links can significantly decrease the time required for
consensus formation.

B. Validity of the heterogeneous mean-field theory

The heterogeneous mean-field approximation in Sec. IV
assumes perfect mixing (in ecological terms, no dispersal
limitation) within each side of the barrier, whereas our sim-
ulated networks represent the exact configuration of the links
(ecological corridors) between the sites. Interestingly, the het-
erogeneous mean-field approximation agrees well with the
results of the explicit (i.e., agent-based) model. Because the
heterogeneous mean-field approximation does not contain
detailed information regarding the network structure, its ef-
fectiveness in predicting the outcome could be utilized in
ecological fieldwork and observational studies of social dy-
namics: It is easier to estimate the connection probability
within and between groups of vertices than to map the links
exactly.

At small X , the agreement between the agent-based model
and the heterogeneous mean-field theory can be explained
by the fact that winning within a single side (within a com-
munity) is a relatively fast process because of the higher
intracommunity connectivity. The main bottleneck for an
invader is to find a way from one community to another.
Therefore, all sites within the same side of the barrier can be
considered almost identical in terms of sending and receiving
the species.
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The validity of the heterogeneous mean-field theory is not
limited to a small X . If X is large, then the proportion of red
vertices ρ1 and ρ2 quickly equalizes between communities
1 and 2. In this case, the heterogeneous mean-field theory
approximates the random drifts in ρ1 and ρ2 as being coupled
by the constraint ρ1 = ρ2 [29,39]; thus, the vertices in the
same community can again be treated as almost identical.
Figure 2 shows that the theory correctly predicts that, in the
SLP, the initial minority can be the likely consensus at small
X but is unlikely to win at large X , even if all other parameters
(P1, P2, and the initial distribution of red and blue vertices) are
held constant. The heterogeneous mean-field approximation
also correctly captures the sensitive dependence of the con-
sensus time T on the process (SLP, RLP, and CLP) and the
network parameters (P1, P2, N1, and N2) for the full range of
intercommunity connectivity (i.e., from X = 1 to X = N1N2;
see Fig. 3).

As X increases, the network topology changes from a
modular structure sensu stricto (i.e., two clusters divided by
a barrier) over a core-periphery structure to an anticommunity
structure, where both communities are sparsely connected
internally and highly connected to each other. Ecological
habitat networks often form a core-periphery structure toward
the edge of the geographic range [40], as the suitable area
tends to become fragmented [41]. However, these cases re-
quire more complex models; the network’s parameters are
unlikely to be homogeneous from the core to the periphery
because of a change in the environment across space. More
typical examples of core-periphery networks are available in
social sciences. For example, networks of professional rela-
tionships between scientists have been reported to possess a
core-periphery structure [42,43]. Networks of romantic rela-
tionships typically exhibit anticommunity structures because
most edges are between agents of different genders [44]. Our
results underline the importance of knowing the limiting pro-
cess (SLP, RLP, or CLP) regardless of whether the network
has a modular, core-periphery, or anticommunity structure.

C. Effect of sender, recipient, and channel limitations

The importance of the update rule has been emphasized
in several studies on general networks (e.g., Refs. [16,45–
47]), and various update rules have appeared under unre-
lated names. The nomenclature suggested here (SLP, CLP,
and RLP) expresses that there are different limiting factors
in the process of copying the state of a vertex to one of its
neighbors. The spread can be limited by the sender (as in our
SLP), the connection (CLP), or the recipient (RLP). In our
study, only one type of limitation was present in each case.
To our knowledge, earlier studies have also assumed only one
type of limitation in each process. For example, Sood et al.
[16] studied the voter model (equivalent to our RLP) and two
processes that they termed the “invasion process” (equivalent
to our SLP) and “link dynamics” (our CLP). Castellano [15]
called the SLP a “reverse voter model,” whereas Macijewski
[45] discussed the SLP and RLP under the names birth-death
and death-birth Moran processes, respectively.

In an ecological or evolutionary context, the SLP, CLP,
and RLP represent different types of limitation on the species
or genotypes. In the SLP, the production of dispersers (e.g.,

seeds in plants) is limited. The CLP corresponds to another
type of dispersal limitation; here, the movement of the species
between habitat patches is limited. This situation occurs, for
instance, when the distance between the patches is high or
the penetrability of the terrain is low, relative to the organ-
isms’ ability to move. For example, if the landing distance
of seeds from the parent plant is relatively short compared to
the distance between suitable habitat patches, then the CLP is
applicable. Finally, the RLP represents establishment limita-
tion. In the case of a plant species, establishment limitation
typically occurs when germination in the new site is limited,
or the survival probability of the seedlings is low.

Several studies on metacommunity ecology and landscape
ecology have shown that these factors are important for the
maintenance of biodiversity in landscapes with multiple habi-
tat patches [48]. For example, the pace of succession in plant
communities can be significantly reduced by any of the afore-
mentioned limiting factors [49].

In this study, we compared the relative importance of the
three types of limiting factors. Let us consider the case in
which the initial condition is polarized: region 1 is inhabited
solely by the “red” species (ρ1 = 1), whereas region 2 is
occupied by the “blue” species (ρ2 = 0). Without loss of gen-
erality, we assume that N1 < N2, that is, the red species is less
frequent than the blue one (it is a “minority”). For example,
the red color may represent a species that has newly arrived
as a potential invader and is attempting to cross a barrier for
the first time. Alternatively, red and blue can represent two
vicariant species that have lived stably on different sides of
the barrier [50]. The process starts when the originally imper-
meable barrier becomes permeable (X > 0), for example, due
to a climate change. Building roads or bridges can also make
a barrier permeable, depending on the species. Creating artifi-
cial ecological corridors is a means of increasing permeability
for species that are worthy of protection. Even a single link
(X = 1) initiates a diffusion of species across the barrier. The
endpoint is reached when one of the species outcompetes the
other on both sides of the barrier. If “red” is an alien invader,
then low R (probability of red fixation, see Sec. V) is preferred
from the perspective of nature conservation. Conversely, if
“red” is a rare species that is worthy of protection, then a high
R may be desirable. Our results suggest that there are two
scenarios in which invasion across the barrier by the initial
minority is likely (see the red region in Fig. 2): In the SLP,
when the internal connectivity on the “red” side of the barrier
is low compared to the “blue” side, or in the RLP, when this
connectivity is high. This finding agrees with earlier results in
the opinion dynamics literature: It depends on the update rule
whether low-degree or high-degree vertices are more likely to
spread their opinions [16,45,47,51–53]. Notably, invasion by
the minority can be successful not only at low X but also in a
broad range of X , depending on P1 and P2 (Fig. 2). In general,
starting from good network positions, the minority can win
against the majority, even though it does not enjoy any local
advantage (i.e., the competition is neutral).

If spreading is limited because crossing the corridors is
difficult (i.e., in the CLP), then the final outcome of competi-
tion does not depend on the number of corridors (X ) and only
the time of winning does. Therefore, creating more ecological
corridors across a barrier or closing some existing corridors
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can influence the pace of invasion, but not the probability
of winning, at least against an alternative species in neutral
competition. In the case of the CLP, the network positions do
not matter either: it is merely the initial abundance of the two
species that determines R. In other words, we observe a mass
effect.

D. Suggestions for future work

The aforementioned results hold true only for neutral com-
petition between two species and genotypes. To gain a more
general view, the model should be extended to non-neutral
competition and to more than two species or genotypes. Non-
neutrality (i.e., selection) has been introduced into several
network models of evolutionary processes [14,19,45].

In the present model, a considerable simplification is that
each vertex can be inhabited only by a single species (red or
blue) at a time. This assumption is plausible in two cases. In
the first case, the spatial resolution is so fine that each site
can contain only a single individual (that belongs to the red
or blue species). In the second case, a timescale separation
can be made, assuming that the time needed for competitive
exclusion within a site is much shorter than the waiting time
for the arrival of a new colonizer (i.e., the system is strongly
dispersal-limited). Future extensions of the model with nonbi-
nary discrete or continuous states are worthy of investigation.
The literature on social influence has highlighted substantial
differences between opinion dynamics on binary, continuous,
and nominal scales [54].

Another interesting task for future research is to investi-
gate two or three types of limitations on spreading acting
simultaneously. Their relative importance can be thought of
as points in a multidimensional parameter space, in which we
have so far only investigated special cases when two out of
three processes (sending, receiving, and transmitting) occur at
infinite rates.

We acknowledge that the network model presented in this
study is not spatially explicit. However, it would be straight-
forward to replace the nonspatial stochastic block model with
a model for modular spatial networks (e.g., the model pro-
posed by Gross et al. [55]). Equation-based results are difficult
to obtain for spatially explicit models; however, Monte Carlo
simulations are certainly possible.

In summary, we studied three different agent-based models
of neutral competition using equation-based and numerical
techniques. The update rules of the models assumed that either
the senders, recipients, or channels of transmission were the
bottlenecks in the spread of the states from one vertex to
another. While we acknowledge that our update rules and
network models are highly simplified compared to real-world
applications, we believe that our results provide a basis for fu-
ture studies of agent-based competition in modular networks.

ACKNOWLEDGMENTS

This work was supported by the Singapore Ministry of
Education (MOE) and Yale-NUS College (through Grant No.
R-607-263-043-121) and the National Science Foundation of
Hungary (HU NKFI FK K124438). We thank Editage for
English language editing.

APPENDIX A: EFFECT OF A NONPOLARIZED
INITIAL CONDITION

All numerical results in the main text were obtained using
polarized initial states. In this Appendix, we compare those
results with the outcomes of Monte Carlo simulations for
an illustrative nonpolarized initial state: ρ1 = ρ2 = 1/2. We
randomly assign an initial color (red or blue) to each vertex
with probability 1/2. In this case, Eq. (7) predicts R = 1/2
for all X and for all three processes (SLP, RLP, and CLP).
Thus, if both communities initially have an equal number of
vertices of both colors, then both colors are equally likely to
win regardless of the number of intercommunity links and
the process. We confirmed this prediction with Monte Carlo
simulations.

Unlike R, the mean consensus time T depends on X and
the type of process (Fig. 4). In Appendix B, we present an
analytic technique that can approximate T as a function of X .
This approximation is applicable for all initial conditions. In
Fig. 4, we represent the approximation by the solid curves.
The approximation is in good agreement with Monte Carlo
simulations (represented by point symbols in Fig. 4). In the
limit of small X , it follows from Eqs. (B8) and (B9) that
the mean consensus time in the nonpolarized case is half of
that in the polarized case; thus, the rankings of the processes
in this limit are the same for both types of initial conditions
(polarized and nonpolarized with ρ1 = ρ2 = 1/2). For larger
values of X , however, there are no simple rules that would
relate the mean consensus time to the initial conditions.

APPENDIX B: MEAN CONSENSUS TIME FOR SPARSE
INTERCOMMUNITY CONNECTIVITY

The diffusion approximation for the three processes under
investigation (SLP, RLP, and CLP) has the following general
form:

f1(ρ1, ρ2)
∂2T

∂ρ2
1

+ f2(ρ1, ρ2)
∂2T

∂ρ2
2

+ g1(ρ1, ρ2)
∂T

∂ρ1
+ g2(ρ1, ρ2)

∂T

∂ρ2
= −1 (B1)

with functions fi(ρ1, ρ2) and gi(ρ1, ρ2) which differ between
the processes. These functions are listed in Table II. If X =
O[min(N1, N2)], then the leading-order terms of Eq. (B1) are

H1 ρ1(1 − ρ1)
∂2T

∂ρ2
1

+ H2 ρ2(1 − ρ2)
∂2T

∂ρ2
2

+ I1 X (ρ2 − ρ1)
∂T

∂ρ1
+ I2 X (ρ1 − ρ2)

∂T

∂ρ2
= −1,

(B2)

where the parameters Hi and Ii are dependent on the process.
Their values are listed in Table II.

For X � min(N1, N2), we obtain the approximate consen-
sus time Tsparse for all three update rules (SLP, RLP, and CLP)
by assuming that Tsparse can be approximated by the truncated
power series in Eq. (15). For the SLP, we insert Eq. (15) into
Eq. (14) and compare the constant terms on the left-hand and
right-hand sides of the equation. The result is

N1c02 + N2c20 = −2N1N2. (B3)
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TABLE II. Functions and parameters that appear in the diffusion approximation (Eqs. (B1) and (B2)).

Function Sender-limited Recipient-limited Connection-limited

f1(ρ1, ρ2) N1P1 ρ1(1−ρ1 )
2E1+X + N2X (ρ1+ρ2−2ρ1ρ2 )

2N2
1 (2E2+X )

2N2
1 P1 ρ1(1−ρ1 )+X (ρ1+ρ2−2ρ1ρ2 )

2N1(2E1+X )
NP1 ρ1(1−ρ1 )
2(E1+E2+X ) + NX (ρ1+ρ2−2ρ1ρ2 )

4N2
1 (E1+E2+X )

f2(ρ1, ρ2) N2P2 ρ2 (1−ρ2 )
2E2+X + N1X (ρ1+ρ2−2ρ1ρ2 )

2N2
2 (2E1+X )

2N2
2 P2 ρ2 (1−ρ2 )+X (ρ1+ρ2−2ρ1ρ2 )

2N2 (2E2+X )
NP2ρ2 (1−ρ2 )
2(E1+E2+X ) + NX (ρ1+ρ2−2ρ1ρ2 )

4N2
2 (E1+E2+X )

g1(ρ1, ρ2) N2X (ρ2−ρ1 )
N1(2E2+X )

X (ρ2−ρ1 )
2E1+X

NX (ρ2−ρ1 )
2N1(E1+E2+X )

g2(ρ1, ρ2) N1X (ρ1−ρ2 )
N2 (2E1+X )

X (ρ1−ρ2 )
2E2+X

NX (ρ1−ρ2 )
2N2 (E1+E2+X )

H1 N−1
1 N−1

1
NP1

N2
1 P1+N2

2 P2

H2 N−1
2 N−1

2
NP2

N2
1 P1+N2

2 P2

I1 (N1N2P1)−1 (N2
1 P1)−1 N

N1(N2
1 P1+N2

2 P2 )

I2 (N1N2P2)−1 (N2
2 P2)−1 N

N2 (N2
1 P1+N2

2 P2 )

Because the blue consensus is an absorbing state, we must
have T (0, 0) = 0. By inserting this condition into Eq. (15),
we obtain the condition

16c00 + 4(c02 + c11 + c20) + c22 = 0. (B4)

Apart from Eq. (B3) and Eq. (B4), there are three more
conditions on the coefficients ci j that follow from evaluating

Eq. (15) in the polarized corner (ρ1, ρ2) = (1, 0) and along
the edges of the parameter space: (ρ1, 0) with ρ1 /∈ {0, 1} and
(0, ρ2) with ρ2 /∈ {0, 1}. We can combine all the conditions on
ci j into the matrix equation

MSLP cSLP = vSLP

with cSLP = (c00, c02, c11, c20, c22)�,

MSLP =

⎡
⎢⎢⎢⎣

0 N1 0 N2 0
16 4 4 4 1
0 −4P2X 2(P1 + P2)X −4P1X −(P1 + P2)X
0 −4P2X 2P1X 4N2P1P2 N2P1P2

0 4N1P1P2 2P2X −4P1X N1P1P2

⎤
⎥⎥⎥⎦ and vSLP = −2N1N2

⎛
⎜⎜⎜⎝

1
0

2P1P2

4P1P2

4P1P2

⎞
⎟⎟⎟⎠.

The corresponding matrix equations for the other two processes, MRLP cRLP = vRLP and MCLP cCLP = vCLP, can be found in
a similar manner. In these cases, the matrices and vectors are

MRLP =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 N1 0 N2 0

16 4 4 4 1

0 −4N2
1 P1X 2

(
N2

1 P1 + N2
2 P2

)
X −4N2

2 P2X −(
N2

1 P1 + N2
2 P2

)
X

0 −4N2
1 P1X 2N2

2 P2X 4N1N2
2 P1P2 N1N2

2 P1P2

0 4N2
1 N2P1P2 2N2

1 P1X −4N2
2 P2X N2

1 N2P1P2

⎤
⎥⎥⎥⎥⎥⎥⎦

, vRLP = −2N1N2

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

2N1N2P1P2

4N1N2P1P2

4N1N2P1P2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

MLD =

⎛
⎜⎜⎜⎝

0 NP2 0 NP1 0
16 4 4 4 1
0 −4NN1X 2N2X −4NN2X −N2X
0 −4NN1X 2NN2X 4NN1N2P1 NN1N2P1

0 4NN1N2P2 2NN1X −4NN2X NN1N2P2

⎞
⎟⎟⎟⎠ and vLD = −2

(
N2

1 P1 + N2
2 P2

)
⎛
⎜⎜⎜⎝

1
0

2N1N2

4N1N2

4N1N2

⎞
⎟⎟⎟⎠.

It is possible to express the solutions of MSLP cSLP = vSLP,
as well as the corresponding equations for the other two pro-
cesses, in a closed form. We use these exact solutions for the
interpolation shown as solid curves in Fig. 3. The expressions
are long and not immediately insightful; thus, we omit them
here. However, one can easily infer the leading-order terms
in the limit X

min(N1,N2 ) → 0 of ci j from the general form of the
matrices MSLP, MRLP, and MCLP, and the vectors vSLP, vRLP,
and vCLP. We find

c11,SLP → − 2N1N2P1P2

(P1 + P2)X
, (B5)

c11,RLP → − 2N2
1 N2

2 P1P2(
N2

1 P1 + N2
2 P2

)
X

, (B6)

c11,CLP → −2N1N2
(
N2

1 P1 + N2
2 P2

)
N2X

. (B7)

In the special case of a polarized initial condition (i.e., ρ1 = 1
and ρ2 = 0), we can simplify Eq. (15) using Eq. (B4),

Tsparse(1, 0) = c00 + 1
4 (c02 − c11 + c20) + 1

16 c22

= − 1
2 c11. (B8)

024308-10
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The combination of Eqs. (B5)–(B8) explains Eq. (16) in the
main text. For the nonpolarized initial state ρ1 = ρ2 = 1/2,
which we consider in Appendix A, we obtain

Tsparse

(
1

2
,

1

2

)
= c00 = −1

4
c11. (B9)

APPENDIX C: APPROXIMATE MEAN CONSENSUS TIME
FOR ARBITRARY INTERCOMMUNITY CONNECTIVITY

If X � min(N1, N2), then we observe in agent-based
simulations that ρ1 ≈ ρ2 after a short transient; thus, the two-
dimensional parameter space (ρ1, ρ2) effectively becomes one
dimensional. The random variable R(ρ1, ρ2) from Eq. (7) is
a convenient choice to turn the two-dimensional input into
a one-dimensional random variable because ρ1 ≈ ρ2 implies
ρ1 ≈ ρ2 ≈ R(ρ1, ρ2). Similar adiabatic approximations have
also been applied in earlier studies [16,27,29,56–58].

With this approximation, the functions g1 and g2 in Table II
are zero, and the partial differential equation (B1) becomes the
ordinary differential equation

R(1 − R)

J

d2T

dR2
= −1, (C1)

where J is a process-dependent parameter,

J =

⎧⎪⎪⎨
⎪⎪⎩

(2E1+X )(2E2+X )(r12+r21 )2

s12+s21
SLP,

4N1N2(E1+E2+X )2

N1(2E2+X )2+N2(2E1+X )2 RLP,

N CLP

(C2)

with

ri j = N2
i (2Ej + X ),

si j = N2
i (2Ej + X )2

[
N3

i Pi(2Ej + X ) + NjX (2Ei + X )
]
.

We denote the solution to Eq. (C1) by Tdense. The subindex
“dense” expresses that we obtained the equation under the as-

sumption that X � min(N1, N2). The unique solution, subject
to the absorbing boundary condition Tdense(0) = Tdense(1) =
0, is

Tdense(R) = −J[R ln R + (1 − R) ln(1 − R)]. (C3)

The comparison of Tdense with numerical results obtained
using Monte Carlo simulations, shows that the fit is excellent
if communities are densely interwoven. However, Tdense is a
poor fit if the interclique connectivity is sparse because, under
this condition, there can be a long transient after the initial
state during which the assumption ρ1 ≈ ρ2 is invalid. For
sparse interclique connectivity, the approximation Tsparse of
Eq. (B8) is more accurate. By interpolating between Tsparse and
Tdense, we can construct a function Tinterp that takes advantage
of a better approximation in the respective parameter range.

As a first step toward the interpolation, we calculate the
difference � between Tsparse for a fixed value of X and the
asymptotic value of Tsparse in the limit of dense intercommu-
nity connectivity,

�(ρ1, ρ2, X ) = Tsparse(ρ1, ρ2, X ) − lim
X ′→∞

Tsparse(ρ1, ρ2, X ′).

(C4)

Here, we explicitly include the dependence on X in the list
of function arguments. We then obtain the interpolation by
adding � as a correction term to Tdense:

Tinterp(ρ1, ρ2, X ) = Tdense[R(ρ1, ρ2, X ), X ] + �(ρ1, ρ2, X ).
(C5)

The solid curves in Fig. 3 represent Tinterp for different
processes and parameters. The interpolation technique was
proposed by Gastner and Ishida [29] for the special case of
the RLP, where both communities were assumed as cliques.
Figure 3 reveals that Tinterp also provides a good fit for more
general two-community networks and for different processes.
This analytic method allows exploring the parameter space
more efficiently than time-consuming Monte Carlo simula-
tions.
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