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Uncoordinated individuals in human society pursuing their personally optimal strategies do not always

achieve the social optimum, the most beneficial state to the society as a whole. Instead, strategies form

Nash equilibria which are often socially suboptimal. Society, therefore, has to pay a price of anarchy for

the lack of coordination among its members. Here we assess this price of anarchy by analyzing the travel

times in road networks of several major cities. Our simulation shows that uncoordinated drivers possibly

waste a considerable amount of their travel time. Counterintuitively, simply blocking certain streets can

partially improve the traffic conditions. We analyze various complex networks and discuss the possibility

of similar paradoxes in physics.
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Many real-world transportation systems in human soci-
eties are characterized by networked structures and com-
plex agents interacting on these networks [1]. Under-
standing the agents’ behaviors has important consequences
for the optimal design and control of, for example, the
Internet, peer-to-peer, or vehicle networks [2]. In fact,
optimality has long been a key principle in science. In
particular, many branches of physics are governed by
principles of least action or minimum energy in the same
way that maximizing utility functions is crucial in eco-
nomics. For example, the flow of currents in a resistor
network can be derived by minimizing the energy dissipa-
tion. One might expect that traffic flows in transportation
networks follow a similar optimization principle. It is in-
deed reasonable to assume that humans opt for the strat-
egies that maximize their personal utility. However, this
does not mean that flows in transportation networks mini-
mize the cost for all users as is sometimes assumed [3]. On
the contrary, we will demonstrate that the flows can in
reality still be far from optimal even if all individuals
search for the quickest paths and if complete information
about the network and other users’ behaviors is available.
Thus, traffic networks can be inherently inefficient—a fact
rarely investigated in previous work on traffic flows [4].

In this Letter, we investigate decentralized transporta-
tion networks where each directed link from node i to j is
associated with a delay lij, the time needed to travel along

the link. In most real networks, delays depend noticeably
on the flow [5], i.e., the number of downloads, vehicles,
etc., per unit time. For example, a single vehicle easily
moves at the permitted speed limit on an empty road, yet
slows down if too many vehicles share the same road.
Thus, the choices of some users can cause delays for others
and possibly conflict with everyone’s goal to reduce the
overall delay in the network. As a game-theoretic conse-
quence, the best options for individual users form a Nash
equilibrium, not necessarily a social optimum.

Consider, for instance, the simple network depicted in
Fig. 1(a) [6]. Suppose that there is a constant flow of
travellers F between the nodes s and t which are connected
by two different types of links: a short but narrow bridge A
where the effective speed becomes slower as more cars
travel on it, and a long but broad multilane freeway B
where congestion effects are negligible. Suppose the delay
on link A is proportional to the flow, lAðfAÞ ¼ fA, while the
delay on B is flow independent, lBðfBÞ ¼ 10, where fAðBÞ is
the flow on link AðBÞ. The total time spent by all users is
given by the ‘‘cost function’’ CðfAÞ ¼ lAðfAÞfA þ
lBðfBÞfB where the flow on B is equal to fB ¼ F� fA.
It is easily verified that C attains its minimum for fA ¼ 5 if
F � 5. If F ¼ 10, for example, each link should be taken
by exactly half of the users, resulting in C ¼ 75 [Fig. 1(b)].

FIG. 1 (color online). Illustration of the price of anarchy.
(a) Suppose F ¼ 10 users travel per unit time from s to t.
(b) The socially optimal flow sends five users along each link,
thus the total cost is C ¼ 75. (c) In the Nash equilibrium with
fA ¼ 10 and fB ¼ 0, C ¼ 100 is higher than in (b).
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In this social optimum, every user on linkB could reduce
his delay from 10 to 6 by switching paths, which poses a
social dilemma: as individuals, users would like to reduce
their own delays, but this reduction comes at an additional
cost to the entire group. In our example, as long as lA � lB,
there will be an incentive for the users experiencing longer
delays to shift to another link. If all users decide to put their
own interests first, the flow will be in a Nash equilibrium
where no single user can make any individual gain by
changing his own strategy unilaterally. All users take the
link A, as shown in Fig. 1(c), at the total cost of C ¼ 100.
Experimental tests indicate that human subjects approach
the problem of finding paths in a network from this latter
self-interested perspective, rather than from the former
altruistic point of view [7]. This behavior, known as
Wardrop’s principle, is observed even if, as in our example,
not a single user experiences a shorter travel time in this
Nash equilibrium than in the social optimum. Furthermore,
if all functions lijðfijÞ are strictly increasing (as in most

realistic cases) and the flows fij are continuous, there is

always exactly one Nash equilibrium [6].
Although differences between Nash equilibria and social

optima occur frequently in social science, only few papers
have studied the difference between optimal and actual
system performance in real transportation networks [4].
To shed light on this issue, we have analyzed Boston’s road
network shown in Fig. 2(a). The 246 directed links in our
network are segments of principal roads, and their inter-
sections form 88 nodes. Delays are assumed to follow the
Bureau of Public Roads (BPR) function widely used in
civil engineering, lij ¼ dij=vij½1þ �ðfij=pijÞ��. Here dij
is the distance of the link between i and j, vij the speed

limit (35 mph on all links, for simplicity), fij the flow, and

pij the capacity of the road segment. The parameters � and

� have been fitted to empirical data [8] as � ¼ 0:2 and
� ¼ 10, i.e., the delays increase very steeply for large
traffic volumes. Capacity is defined as the traffic volume

at ‘‘level of service E’’ which is approximately 2000
vehicles per hour multiplied by the number of lanes [9].
We used Google Maps to identify the principal roads,
measure the distances dij, and count the number of lanes

for each direction.
Next we have calculated the flows fij for various total

traffic volumes F from Harvard Square to Boston
Common. The socially optimal flows fSOij are determined

by minimizing the cost to society per unit time C ¼
P

linkði;jÞlijðfijÞfij. This optimization problem, satisfying

flow conservation at each intersection, can be solved with
standard convex minimum cost flow algorithms [10]. For
the Nash equilibrium, we can use the fact that the equilib-

rium flows fNEij minimize the objective function [6] ~C ¼
P

linkði;jÞ
Rfij
0 lijðf0Þdf0. The price of anarchy (POA) is de-

fined as the ratio of the total cost of the Nash equilibrium to
the total cost of the social optimum [11] indicating the
inefficiency of decentralization; for example in Fig. 1,
POA ¼ 100=75 ¼ 4=3, or in general

POA ¼
P

lijðfNEij ÞfNEij
P

lijðfSOij ÞfSOij
: (1)

4=3 is in fact the upper bound for the POA in networks with
affine delays, i.e., � ¼ 1 [6,12]. For larger �, the theoreti-
cal maximum is higher, but here we are more interested in
typical than in worst-case network topologies. For � ¼ 10,
Fig. 3(a) shows the POA versus the total traffic volume F
for Boston’s roads. Except for very small F, the Nash
equilibrium cost is higher than the social optimum so
that POA> 1. The worst ratio occurs for a traffic volume
of 10 000 vehicles per hour—a quite realistic flow, see
[13]—where POA � 1:30, i.e., individuals waste 30% of
their travel time for not being coordinated.
To what extent are properties of the POA observed in

Boston’s road network characteristic of networks with
flow-dependent costs? Among road networks, the results

FIG. 2 (color online). Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes).
(a) Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time needed
in the Nash equilibrium if that link is cut [blue (dark gray): no change, red (medium gray): more than 60 seconds additional delay].
Black dotted lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates
additional congestion. This counter-intuitive phenomenon is called ‘‘Braess’s paradox.’’
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appear to be typical as suggested by an analysis of the road
networks of London and New York in Fig. 2. London’s
network consists of 82 intersections and 217 links marked
as principal roads by Google Maps. We find that the POA
can increase up to 24% for trips between the Borough and
the Farringdon underground stations [Fig. 3(a) inset].
Similar results also hold for New York, consisting of 125
intersections and 319 streets. The inset of Fig. 3(a) shows
that the POA can be as high as 28% when 12 000 vehicles
per hour travel from Washington Market Park to Queens
Midtown Tunnel. The results remain qualitatively similar
for different sets of sources and destinations suggesting
that a high POA can generally become a serious problem.

To gain further theoretical insight, we also constructed
four ensembles of bidirectional model networks with dis-
tinct underlying structures [14]: a simple one-dimensional
lattice with connections up to the third-nearest neighbors
and periodic boundary conditions, Erdős-Rényi random
graphs with links between randomly drawn pairs of nodes,
small-world networks with a rewiring probability 0.1, and
Barabási-Albert networks with broad degree distributions.
All the networks contain 100 nodes and have an average
degree of 6. Every link between nodes i and j has a delay of
the form lij ¼ aijfij þ bij, where aij ¼ aji is a random

integer equal to 1, 2, or 3, and bij ¼ bji between 1 and 100.

This affine cost function captures essential properties of
links in important physical networks. In electric circuits,
for example, the flow fij is an electric current and the delay

lij can be interpreted as the voltage difference between i

and j. An affine current-voltage characteristic occurs in
circuits with a combination of Ohmic resistors (resistances
aij) and Zener diodes (breakdown voltages bij). Further

examples with affine cost functions include mechanical,
hydraulic, and thermal networks [15].

For each model network, we go through every pair of
nodes to calculate the POA for various total flows F. Then
the results are averaged over 50 networks to find the mean
hPOAðFÞi for each ensemble as plotted in Fig. 3(b). After
averaging over many pairs, there are no longer multiple
local maxima as in Fig. 3(a). Instead, we find unimodal
functions for all ensembles with a steep increase for small
F and a long tail for large flows. The qualitative behavior
can be understood as follows. The social optimum mini-
mizes C ¼ Pðaijfij2 þ bijfijÞ whereas the flow in the

Nash equilibrium minimizes ~C ¼ Pð12 aijfij2 þ bijfijÞ. In
the limit F ! 0, both objective functions become identical
and, therefore, hPOAi ! 1. For F ! 1, the quadratic

terms in the sums dominate, hence C=~C ! 2, i.e., both
objective functions are minimized by the same asymptotic
flow pattern fij=F and hPOAi again approaches 1. The

maximum hPOAi occurs roughly where the quadratic and
linear terms in the objective functions are comparable, i.e.,
aijfij � bij for paths with positive flow. Ignoring correla-

tions between aij and fij, we have hfiji � hbiji=haiji.
Since F ¼ chfiji where c is a factor bigger than but of

the order of 1, we estimate the maximum hPOAi to be at
Fmax � chbiji=haiji. In our example, haiji ¼ 2 and hbiji ¼
50:5, so we predict Fmax to be bigger than but of the order
of 25. Numerically, we find the maxima for our four
ensembles to be between 30 and 60 in good agreement
with our estimate. Barabási-Albert networks tend to have
the lowest hPOAðFÞi and small-world networks the high-
est, but the statistical dependence between hPOAi and F is
strikingly similar among all ensembles.
Knowing the POA is important, but it is even more

valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stimu-
late a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge a fee
for using each link equal to the ‘‘marginal cost’’ fijlij

0ðfijÞ
so that the new Nash flow becomes equal to the social
optimum. Unfortunately, if collected taxes are not returned
to the users, such marginal cost taxes do not improve the
cost of the Nash equilibrium in the case of BPR delays
[16]. However, as we have learned from Fig. 3(b), we can
change the POA by modifying the underlying network
structure. For instance, closing roads to car traffic is rela-
tively easy to implement and is, moreover, equally effec-
tive for everybody. One might expect that closing roads
only leads to increased congestion. However, contrary to
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FIG. 3 (color online). The price of anarchy (POA), as a func-
tion of the traffic volume F. (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with � ¼ 0:2, � ¼ 10. Inset: The POA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The POA in
ensembles of model networks with affine delays. The error
bars represent 1 standard deviation in the POA distribution.
Inset: The POA in regular lattices with multiple random sources
and sinks (‘‘multicommodity flows’’) averaged over 100 to 400
networks. Each pair contributes equally to F.
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common intuition, Braess’s paradox suggests that road
closures can sometimes reduce travel delays [17].

We investigated whether this apparent contradiction
occurs in the road networks of Fig. 2. In the case of
Boston’s roads, we set F ¼ 10 000 between Harvard
Square and Boston Common which is the flow where the
POA reaches its maximum, i.e., where reducing the travel
time is most desirable. We then compare the costs of the
Nash flow on the original network with those on networks
where one of the 246 streets is closed to traffic. In most
cases, the cost increases when one street is blocked, as
intuitively expected. Nonetheless, there are six connections
which, if one is removed, decrease the delay in the Nash
equilibrium, shown as dotted lines in Fig. 2. If all drivers
ideally cooperated to reach the social optimum, these roads
could be helpful; otherwise it is better to close these streets.
Similar results are also found in the other two networks:
there are seven links causing Braess’s paradox in London
(F ¼ 10 000) and twelve in New York (F ¼ 18 000), see
Figs. 2(b) and 2(c). Of course, the identified roads may not
always be bad because a different set of start and end nodes
can change the number and location of links triggering
Braess’s paradox. However, their existence under the in-
vestigated conditions suggests that Braess’s paradox is
more than an academic curiosity [17,18] or an anecdote
with only sketchy empirical evidence [19]. Nevertheless,
more work is needed to generalize the presented results, for
example, for multiple sources and destinations. As a first
step, we have calculated the POA for such multicommodity
flows [Fig. 3(b) inset].

Braess’s paradox exists because the social optimum and
the Nash equilibrium react in different ways to changes in
the network. After a link is closed, the socially optimal
travel time must be at least as long as before. However,
there is no a priori reason why severing a link could not
improve the Nash travel time. By the same argument,
adding new links can potentially create more delay in the
Nash equilibrium. Hence, a target for future policies in
transportation networks is to prevent unintended delays
caused by, ironically, well-intentioned new constructions
that form a disadvantageous Nash flow. Because convex
costs such as the BPR function are common in economics,
Braess’s paradox is presumably also frequent outside ve-
hicle transportation networks. In fact, we do not need game
theory to find this paradox. It also occurs in physical net-
works where equilibrium principles can drive the network
away from optimality. For example, currents in electric
circuits do not always minimize the dissipated energy, but
instead satisfy Kirchhoff’s laws. As a consequence, remov-
ing wires can sometimes counter-intuitively increase the
conductance [15]. Although electrons in a circuit, unlike
drivers in a road network, do not act selfishly, the equilib-
rium conditions (Kirchhoff’s laws and Wardrop’s princi-
ple) are in fact closely related. Further studies of the price
of anarchy and Braess’s paradox might therefore lead to
significantly improved flows in a number of important
applications.
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